
6
Analysis of Privacy Preservation

Enhancements in Federated Learning
Frameworks

Z. Anastasakis1, S. Bourou1, T. H. Velivasaki1, A. Voulkidis1,
and D. Skias2

1Synelixis Solutions S.A., Greece
2Netcompany-Intrasoft S.A., Greece
E-mail: anastasakis@synelixis.com; bourou@synelixis.com;
terpsi@synelixis.com; voulkidis@synelixis.com;
Dimitrios.Skias@netcompany-intrasoft.com

Abstract

Machine learning (ML) plays a growing role in the Internet of Things (IoT)
applications and has efficiently contributed to many aspects, both for busi-
nesses and consumers, including proactive intervention, tailored experiences,
and intelligent automation. Traditional cloud computing machine learning
applications need the data, generated by IoT devices, to be uploaded and
processed on a central server giving data access to third parties raising
privacy and data ownership concerns. Federated learning (FL) is able to over-
come these privacy concerns by enabling an on-device collaborative training
of a machine learning model without sharing any data over the network.
However, model sharing can also potentially reveal sensitive information.
Therefore, federated learning needs additional privacy-preserving techniques
to enable fully private machine learning model sharing and training. In this
chapter, privacy-preserving techniques for federated learning are studied.
In addition, a comparative analysis of state-of-the-art federated learning
frameworks against privacy-preserving techniques is presented. The analysis
comprises the identification of main advantages and disadvantages for eight
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FL frameworks as well as the investigation of the frameworks under criteria
related to their FL features and privacy preservation options.

Keywords: Federated learning, privacy preserving, Internet of Things, artifi-
cial intelligence, machine learning.

6.1 Introduction

Artificial intelligence (AI) produces insights by automatically identifying
patterns and detecting anomalies on data collected or generated using IoT
sensors and other devices. Machine learning (ML) is almost everywhere
nowadays, from small wearable devices and smartphones to powerful super-
computers ensuring fast and accurate data analysis. Moreover, IoT devices
generate a great amount of data every day and, thus, raise significant concerns
about privacy and ownership of the collected or generated data.

Traditional machine learning applications require their training and test-
ing data to be located in a central cloud server. This raises privacy and
data ownership concerns. Furthermore, IoT devices are already capable of
processing a vast amount of data due to their powerful hardware specifica-
tions, making it possible for local data processing and analysis. Thus, edge
computing is witnessing great interest especially after the emergence of 5G.

Nevertheless, data privacy is the most fundamental objective regarding
data access and processing. This has led to the elaboration of strict data
privacy legislations such as the Consumer Privacy Bill of Rights in the
U.S. and the European Commission’s General Data Protection Regulation
(GDPR). For example, Articles 5 and 6 of the GDPR state that data collection
and storage should be restricted to only what is user-consented and decidedly
indispensable for processing.

To address privacy issues, Google [1] introduced federated learning (FL),
a specific approach in edge computing. Federated learning is able to over-
come the privacy concerns that emerge in a central cloud-based architecture
by enabling an on-device collaborative training of a machine learning model
without sharing any data over the network. This is achieved by initializing
the training of a global machine learning model on a central server for a few
iterations to obtain some initial weights. These model weights are then sent
to the participants (data owners), which use their own resources to locally
train the machine learning model. After training, each client sends its own
updated weights to the server, which is responsible to aggregate the weights
from all the different clients and produce a new global model. This process
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is repeated for several iterations until the global model reaches a certain
desired accuracy level or reaches the limit set for the number of iterations.
Federated learning aims to train an ML model privately by sharing model
parameters (weights of the model) than sharing the data itself. This feature
enables machine learning models to run on local and private data. However,
model sharing can also potentially reveal sensitive information. Therefore,
FL needs additional privacy-preserving techniques to enable fully private
machine learning model sharing and training. Differential privacy (DP) and
secure multiparty computation and homomorphic encryption (HE) constitute
the most popular privacy-preserving techniques for FL systems.

6.2 Privacy-preserving Federated Learning

6.2.1 Federated learning frameworks

Several open-source federated learning frameworks have been developed to
apply distributed learning on decentralized data but also to enhance privacy
and security. Google proposed TensorFlow Federated [2], an open-source
framework for federated learning and other computations on decentralized
data. Another open-source federated learning framework is PySyft, which
was introduced by OpenMined [3]. PySyft is suitable for research in FL and
allows the users to perform private and secure deep learning. PySyft is also
integrated into PyGrid [4], a peer-to-peer platform for federated learning and
data privacy, which can be used for private statistical analysis on the private
dataset as well as for performing FL across multiple organization’s datasets.
WeBank’s AI department introduced FATE (federated AI technology enabler)
[5], an open-source framework that supports FL architectures and secure
computation of various machine learning algorithms. FATE is an industrial-
grade framework mostly oriented toward enterprise solutions. The authors in
[6] presented Flower, a friendly open-source federated learning framework
that is ML framework agnostic and provides higher-level abstractions to
enable researchers to experiment and implement on top of a reliable stack.
Another promising open-source federated learning framework is Sherpa.ai,
which is presented in [7] and incorporates federated learning with differential
privacy. Sherpa.ai results as a combination of machine learning applications
in a federated manner with differential privacy guidelines. FedML [8] is
an open-source federated learning framework and benchmarking tool for
federated machine learning. FedML supports three computing paradigms: on-
device training for edge devices, distributed computing, and single-machine
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simulation. FedML promotes diverse algorithmic research due to the generic
API design and the comprehensive reference baseline implementations.
Another well-known open-source federated learning framework is the Pad-
dleFL [9]. In PaddleFL, researchers can easily replicate and compare dif-
ferent federated learning algorithms while they can easily be deployed in
large-scale scenarios. Leaf [10] is a modular benchmarking framework for
federated learning with applications including federated learning, multi-task
learning, meta-learning, and on-device learning. OpenFL [11] is another
open-source federated learning framework for training ML algorithms using
the data-private collaborative learning paradigm of FL. OpenFL works with
machine learning pipelines built on top of TensorFlow and PyTorch and is
easily customizable to support other machine learning and deep learning
frameworks. NVIDIA FLARE [12] is a domain-agnostic, open-source, and
extensible SDK for federated learning, which allows porting existing ML/DL
workflow to federated settings and supports common privacy preservation
techniques. In the following sub-sections, a more extended analysis is given
for each framework. In Section 6.3.2, a thorough comparative analysis on
these federated learning frameworks is presented toward the scope of
IoT-NGIN.

6.2.2 Privacy preservation in federated learning

While FL is resilient and resolves, up to a point, data governance and
ownership issues, it does not guarantee security and privacy by design. A
lack of encryption can allow adversaries to abduct personally identifiable
data directly from the processing nodes or interfere with the communication
process, expose network vulnerabilities, and perform attacks. In addition,
the decentralized nature of the data complicates data handling and cura-
tion. Moreover, in the case where algorithms running on the nodes are
not encrypted, or the updates are not securely aggregated, the possibility
of data leakage grows. Additionally, the algorithms can be tampered with,
reconstructed, or get stolen (parameter inference), which can be strictly
forbidden for most applications. Federated learning can be vulnerable to
various backdoor threats (bug injection, inference, and model attacks) on
different processing steps. Therefore, additional measures are essential to
protect data from adversarial attack strategies such as data poisoning and
model poisoning attacks. In Table 6.1, three major attacks against the dataset
with their description and a basic example for each case are listed, while in
Table 6.2, algorithmic-based attacks are presented.
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Table 6.1 Various attacks against the data in a federated learning system.
Attacks against the
dataset

Description Example

Re-identification attack Recover an individual’s
identity by exploiting
similarities to other datasets
and exposing the data
characteristics.

Exploiting similarities
between data distributions
and actual values from other
datasets in which the same
individual is contained.

Dataset reconstruction
attack

Determine an individual’s
characteristics from the
training process without
accessing the data itself.

Using multiple statistical
information (probabilities,
distributions, etc.) to get
data points that correspond
to a single individual.

Table 6.2 Major attacks against algorithms that run in a federated learning system.
Attacks against
algorithm

Description Example

Adversarial attack Manipulation of the input to
an algorithm with the goal
of altering it, most often
in a way that makes the
manipulation of the input
data impossible to detect by
humans.

Compromising the compu-
tation result by introducing
malicious training examples
(model poisoning).

Model-
inversion/reconstruction
attack

Derivation of information
about the dataset stored
within the algorithm’s
weights by observing the
algorithm’s behavior.

Using generative algorithms
to recreate parts of the train-
ing data based on algorithm
parameters.

In general, the goal of an adversary during data poisoning is to alter the
data according to their preferences. This can be done by ingesting a mixture
of clean and false data into the training flow. For example, in [13], the result
of an image classification learning task can be vulnerable to a data poisoning
attempt by a mislabeling or a false-labeling operation. Wang refers to differ-
ent defense mechanisms from simple data management to more sophisticated
and robust approaches. Data sanitization is a rather basic defense, while prun-
ing (removing neurons in a network) seems more reliable. Nonetheless, the
pruning technique raises concerns regarding privacy-preserving in federated
learning. In [14], [15], and [16], some legitimate defenses for these attacks are
proposed, although backdoor attacks become stronger and more adjective.
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Model poisoning attack refers to partial or full model replacement during
training. The authors in [17] and [18] describe possible attacks and argue
about various defenses (SMC, DP, etc.). Generative adversarial networks
(GANs) [19] can be one of the most vicious threats in federated learning.
The authors in [20] exploit defenses against GAN-based attacks and present
the anti-GAN framework to prevent adversaries from learning the real distri-
bution of the training data. On the other hand, GANs in [21] are utilized as a
defense mechanism against adversarial attacks in federated learning systems.
As a conclusion, FL is vulnerable to various attacks and great attention must
be given to the defense mechanisms and tools; otherwise, it will not be
possible for an FL system to fulfill its privacy-preserving objectives.

6.2.3 State-of-the-art approaches in privacy-preserving
federated learning

Although FL enables on-device machine learning, it does not guarantee
security and privacy. The fact that the private data are not shared with the
central server is for sure an advantage; yet, there are ways to extract private
information from the data. After the shared model is trained on the user’s
device based on its own private data, the trained parameters (model weights)
are sent to the central server, and through an aggregation mechanism, the
global model is composed. During the model transfer, it is possible for an
adversary to extract information about the private data from those trained
parameters. For example, in [22], the authors indicate that it is possible to
extract sensitive text patterns, e.g., the credit card number, from a recurrent
neural network that is trained on users’ data. Therefore, additional mecha-
nisms are required to protect data disclosure from attack strategies, which are
subject to privacy-preserving methods in FL. The major approaches that can
be employed in FL for data protection are differential privacy, homomorphic
encryption, and secure multiparty computation.

Differential privacy (DP) is a method that randomizes part of the mecha-
nism’s behavior to provide privacy [23], [24]. The motivation behind adding
randomness (either Laplacian or Gaussian) into a learning algorithm is to
make it impossible to reveal data patterns or insights that correspond either
to the model and the learned parameters or to the training data. Therefore,
the DP provides privacy against a wide range of attacks (e.g., differencing
attacks, linkage attacks, etc.) [25]. The method of introducing noise to the
data can result in great privacy but may compromise accuracy. Therefore,
there is a tradeoff between applying differential privacy and achieving a high
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level of model accuracy. However, the authors in [25] present a method,
which applies privacy-preserving without sacrificing accuracy.

Another privacy-preserving technique is the secure multiparty compu-
tation (SMC), a well-defined cryptographic-based technique that allows a
number of mutually suspicious parties to jointly compute a function before
training a model while preserving the privacy of the input data [26], [27]. In
the case of ML applications, the function can be the model’s loss function
at training, or it could be the model itself during inference. The challenge
of applying SMC on a large-scale distributed system is the communication
overhead, which increases significantly with the number of participating
parties.

Homomorphic encryption [28] secures the learning process by applying
computations (e.g., addition) on encrypted data. Specifically, an encryption
scheme is characterized as homomorphic, when standard operations can be
applied directly to the cypher data, in such a way that the decrypted result is
equivalent to performing analogous operations to the original encrypted data
[29], [30]. For machine learning methods, homomorphic encryption can be
applied when training or inference is performed directly on encrypted data
(cyphertexts). In scenarios, where large mathematical functions are imple-
mented to cyphertext space, a major bottleneck of homomorphic encryp-
tion emerges. The properties of homomorphic encryption schemes confront
several limitations, related to encryption performance.

Alternative hybrid approaches that combine SMC with DP and account
dishonest participants exist. In [31], authors confront the inference risk of
SMC and the low accuracy that DP presents due to the noise injection
by combining them. Furthermore, they propose a tunable trust parameter
attribute by additively HE, which considers many trust scenarios. HybridAl-
pha method [32] establishes a multi-input functional encryption (public-key
cryptosystem) scheme to prevent inference attacks on SMC. HybridAl-
pha introduces a trusted third party to derive public keys to parties who
intend to encrypt their data before training. Wang [33] presented HDP: a
differential private framework for vertical federated learning (cross-silo).
HDP-VFL does not rely on HE or on third-party collaborators to assure
data privacy; therefore, it is easy to implement and is rather fast. Chain-
PPFL [34] can achieve privacy-preserving without compromising the model
accuracy using SMC and DP in a “trust-but-curious” way. The proposed
communication mechanism constructs a serial chain frame that transfers
masked information between participants. In addition, chain-PPFL does not
require encryption or obfuscation before transmitting information because
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it uses the P2P encrypted secure transmitted channel, thus requiring less
resources. The authors in [35] present a fully decentralized federated learning
process (BlockFlow) as a more resilient approach against adversarial and
inference attacks. BlockFlow adopts blockchains as computational platforms
and, contrarily to other methods, does not require a central trusted part. Unlike
other methods, there is no need for a centralized test dataset and different
parties share DP models with each other.

6.2.4 Comparison of federated learning frameworks considering
privacy preservation

Considering the extensive analysis presented above, for the FL methods/tools
and the privacy-preserving approaches, comparative analysis for federated
learning frameworks is conducted and presented in this section. The compar-
ison refers to the FL frameworks analyzed in Section 6.2.1 and for which the
main benefits and drawbacks are briefly presented in Table 6.3.

The comparison among the FL frameworks listed in Table 6.3 is based on
the following criteria:

• Criterion 1: This criterion is based on basic federated learning features.
The operating system support, the federated learning categorization,
e.g., if it supports cross-silo or cross-device setups, which machine
learning and deep learning libraries (TensorFlow, PyTorch, etc.) do the
framework supports and if there is a Federated attack simulator.

• Criterion 2: This includes three computing paradigms; the standalone
simulation that gives the possibility for a user to apply FL scenarios
in simulation; the distributed computing capability that shows if an FL
framework is capable of performing in a distributed environment where
participants are different devices; the capability of on-device training
for IoT and other mobile devices that normally have limited hardware
resources.

• Criterion 3: If FL frameworks include common FL algorithms and
configurations like federated average [36], decentralized FL, vertical FL,
and split learning [37].

• Criterion 4: An essential characteristic for an FL framework is the exis-
tence of privacy-preserving mechanisms and also what types of privacy-
preserving methods are supported by the frameworks. In cases where
privacy-preserving techniques are not presented, the FL framework must
give the capability to integrate such mechanisms.
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Table 6.3 Main pros and cons of the federated learning frameworks.
FL framework Main pros Main cons
NVIDIA
FLARE

1. It supports training in real-life
scenarios
2. It supports a high number of
clients
3. It is customizable, supporting
the integration of ML models
implemented via state-of-the-art
ML frameworks, such as Ten-
sorFlow and PyTorch
4. It supports privacy reserving
methods, such as percentile pri-
vacy, homomorphic encryption,
and MPC, which can also be
combined
5. It comes with good documen-
tation and large community

1. It does not support on-device
training
2. Its performance drops as the
number of parties increases
3. It does not support heteroge-
neous clients

FATE 1. Production ready
2. High-level interface
3. Provides many FL algorithms
4. Containerized − Kubernetes
support

1. It does not establish any differ-
ential privacy algorithms
2. Its high-level interface relies
too much on a poorly documented
domain-specific language
3.It does not have a core API;
so developers must modify the
source code of FATE to imple-
ment custom FL algorithms
4. It does not use GPUs for train-
ing

Flower 1. Provides a template API that
allows users to easily transform
ML pipelines to FL
2. Very easy to develop and ML
framework-agnostic
3. Supports a great number of
clients
4. It is really customizable

1. It does not have any differential
privacy algorithms
2. It is relatively new and the sup-
port community is not that big
3. It does not provide secure
aggregation

PySyft &
PyGrid

1. Rather easy to use
2. It has the largest community
of contributors among the FL
frameworks

1. PySyft is only for one server
and one client (duet) and can run
only in simulation mode
2. PyGrid is needed in order to
develop real FL scenarios

TFF 1. It integrates seamlessly with
existing TensorFlow ML mod-
els

1. As of the time of writing, it
can be used only in the simulation
mode because it does not support
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Table 6.3 (Continued.)
FL framework Main pros Main cons

2. It is easy to use due to its
familiarity

the federated operation mode
2. The data used for training can-
not be loaded from the remote
worker itself but must be parti-
tioned and transferred through the
central server

Sherpa.ai 1. Relatively easy to use because
of the Jupiter notebooks, etc.
2. Implements FL algorithms
and it is easy to customize them

1. Poor documentation
2. Small community with only
seven contributors
3. The project’s repository is not
active (4+ months after the latest
update)
4. Can run only in the simulation
mode
5. Limited applicable scenarios

FedML 1. On-device training for edge
devices including smartphones
and Internet of Things (IoT)
2. Distributed computing
3. Growing community
4. Multi-GPU training support

1. No privacy-preserving tech-
niques are applied. Only a secure
aggregation technique is imple-
mented
2. The multiple available modules
for different situations might lead
to drawbacks and create overheads

PaddleFL 1. It provides a high-level
interface for some basic and
well-known FL aggregators and
implements a differentially pri-
vate algorithm
2. It provides enough privacy-
preserving methods such as DP,
MPC, and secure aggregation

1. It is fairly difficult to use it
because it uses a little-known DL
platform
2. It has poor documentation and
has a small community − only 12
contributors
3. It is not compatible with other
frameworks and that is a major
drawback

Leaf 1. It provides some basic
federated learning mechanisms
such as the federated averaging
aggregator
2. It is modular and adaptive
3. It enables reproducible
science

1. It does not provide any
benchmark for preserving privacy
in an FL setting
2. It does not offer as much
official documentation or tutorials
3. Limited federated learning
capabilities; it is mainly for
production purposes

• Criterion 5: In order for an FL framework to be flexible and adaptive,
documentation, tutorials, and community support are significant.
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Table 6.4 Federated learning framework comparison ( 1
2

).
FL framework NVIDIA

FLARE
FATE Flower PySyft +

PyGrid
TFF

Standalone
simulation

Yes Yes Yes Yes Yes

Distributed
computing

Yes Yes Yes Yes Yes

On-device
training
(mobile, IoT)

No No Yes −
depends on
the network

Yes No

FedAvg Yes Yes Yes Yes Yes
Decentralized
FL

Yes No Yes No No

FedNAS No No Yes No No
Vertical feder-
ated learning

Yes Yes No No

Split learning Yes No Yes Yes No
Privacy-
preserving
methods

Yes
(HE,
percentile
privacy,
exclude
Vars, DP)

No (Yes)
(PATE −
implemented
in IoT-NGIN,
known as
FedPATE
[39])

Yes
(SMC,
HE)

Yes
(DP)

DP noise type No No Yes No No
Adaptive
differential
privacy

No No No No No

Subsampling
methods
to increase
privacy

No No No No No

Documentation
and
community
support

Large Partial
−
mostly
in Chi-
nese

Yes
Growing
rapidly

Yes Yes

Secure aggre-
gation

Yes Yes Future imple-
mentation

No

• Criterion 6: Secure aggregation [38] algorithm implementation to
further enhance privacy.
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Table 6.5 Federated learning framework comparison (2/2).
FL framework Sherpa.ai FedML PaddleFL OpenFL
Standalone
simulation

Yes Yes Yes Yes

Distributed
computing

No Yes Yes Yes

On-device
training
(mobile, IoT)

No Yes No No

FedAvg Yes Yes Yes Yes
Decentralized
FL

No Yes Yes Yes

FedNAS No Yes No No
Vertical feder-
ated learning

No Yes Yes Yes

Split learning No Yes Yes Yes
Privacy-
preserving
methods

Yes
(DP)

No Yes
(SMC, DP)

Yes
(SMC, DP)

DP noise type Yes No Yes Yes
Adaptive
differential
privacy

Yes No Yes Yes

Subsampling
methods
to increase
privacy

Yes No Yes Yes

Documentation
and
community
support

Yes Stable Partial Partial but
growing

Secure aggre-
gation

No Future imple-
mentation

Yes Yes

• Criterion 7: Nowadays, training on GPUs especially for deep learning
tasks is essential. Especially for limited hardware resources on devices,
GPUs have shown remarkable computation capabilities compared to
CPUs.

• Criterion 8: All the FL frameworks in comparison are open-sourced but
with different licenses and therefore of different usage limitations.

• Criterion 9: More general properties and characteristics of the FL
frameworks. To be more specific, an FL framework must be easy to use,
adaptive, preserve interoperability, flexibility, and privacy.
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The characteristics of each FL framework against the nine identified
criteria are tabulated in Tables 6.4 and 6.5.

Based on the tables above, privacy-preserving methods are available
for NVIDIA FLARE, Flower, PySyft & PyGrid, TensorFlow Federated,
Sherpa.ai, PaddleFL, and OpenFL; however, the exact privacy-preserving
methods supported differ across the FL frameworks. On the other hand,
Flower, PySyft & PyGrid, and FedML support on-device training.

6.3 Conclusion

This chapter has provided a critical review of federated learning theory, tools,
and algorithms in relation to providing string privacy protection guarantees
for individual nodes’ data and models. We have explained why federated
learning is necessary for privacy-preserving machine learning with many
clients on decentralized data. We have proceeded with providing an extensive
comparative analysis over open-source FL tools, mainly under the prism
of privacy preservation, providing guidance for experimentation, according
to underlying application requirements. Considering the outcomes of this
analysis, three FL frameworks (NVIDIA FLARE, and Flower with PATE and
TFF) have been selected for applying privacy-preserving federated learning
in pilot use cases. Specifically, the project considers NVIDIA FLARE in
“Traffic Flow & Parking Prediction” and “Crowd Management” use cases
in the Smart City Living Lab, as well as in “Crop diseases prediction &
irrigation precision” in the Smart Agriculture Living Lab. Moreover, Flower
(integrated with PATE) has been considered in training ML models for
classification tasks, relevant to the scope of the “Crop diseases prediction
& irrigation precision” use case, as well. In addition, research on training ML
models in large-scale settings for tabular data classification in the scope of
network attack detection has been considered for the Smart Energy Living
Lab. Future work aims at enhancing privacy in state-of-the-art open source
FL frameworks, suitable for researching FL under real settings in the context
of ensuring data privacy across the integrated IoT, edge, and cloud continuum.
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