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Abstract

Federated learning (FL) is a novel methodology aiming at training machine
learning (ML) and deep learning (DL) models in a decentralized manner in
order to solve three main problems seen in the artificial intelligence (AI)
sector, namely, (a) model optimization, (b) data security and privacy, and (c)
resource optimization. FL has been established as the “status quo” in today’s
AI applications especially in the industrial and critical infrastructure (CI)
domain, as the three aforementioned pillars are invaluable in assuring their
integrity. CIs include important facilities such as industrial infrastructures
(smart grids, manufacturing, powerlines, etc.), medical facilities, agriculture,
supply chains, and more. Deploying AI applications in these infrastructures
is an arduous task that can compromise the CI’s security and production
procedures, requiring meticulous integration and testing. Even a slight mis-
take leading to the disruption of operations in these infrastructures can have
dire consequences, economical, functional, and even loss of life. FL offers
the needed functionalities to galvanize the integration and optimization of
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artificial intelligence in critical infrastructures. In this chapter, we will outline
the application of federated learning in decentralized critical infrastructures,
its advantages and disadvantages, as well as the different state-of-the-art
techniques used in the CI domain. We will showcase how the centralized
ML approach transitions into the federated domain while we will show
practical examples and practices of deploying the federated learning example
in representative CIs, like, power production facilities, agricultural sensor
networks, smart homes, and more.

Keywords: Federated learning, artificial intelligence, data security, critical
infrastructures, model optimization, resource optimization.

5.1 Introduction

5.1.1 Definition and motivation

Federated learning (FL) is a distributed machine learning technique that
allows multiple devices or entities to collaboratively train a model while
keeping their data on-device. In federated learning, the data is distributed
across a large corpus of devices or entities. This approach trains an AI model
on the remote device using the local data and then sends only the model to
a specified aggregation unit. There, a new and optimized global model is
created by aggregating the model updates from all the devices. This approach
allows for the training of models on large amounts of data without the need
to transmit or centralize it, thus addressing the challenges of data privacy,
security, and resource allocation.

The methodology was first introduced by the Google Research team in
a 2016 paper titled “Communication-Efficient Learning of Deep Networks
from Decentralized Data” [1]. It represents an advancement from traditional
distributed machine learning and is designed to address the challenges of
training AI models without the need to transfer data, for reasons related to
computation, allocation, and privacy.

The motivation behind FL is to enable machine learning in scenarios
where data is distributed across devices or is sensitive and cannot be cen-
tralized. For example, in the case of personalized healthcare, data may be
collected from multiple devices such as wearables, smartphones, and hos-
pitals. In these scenarios, it is not practical or secure to centralize the data
and allows for the training of models without compromising the privacy and
security of the data. Additionally, this approach can be applied in mobile
computing, where data is distributed across millions of mobile devices [2],
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Figure 5.1 Federated learning concept.

and it allows training models on this data without the need to transmit large
amounts of data over the network.

Federated learning also has the potential to democratize machine learning
by enabling the participation of a large number of devices and entities in the
training process. This can lead to more diverse and representative datasets,
and also allows for training models in remote or underserved areas where
data may not be easily accessible.

Federated learning can also be used to improve the performance of models
in edge computing applications. By allowing devices to train models locally,
federated learning can reduce the need for transmitting large amounts of
data over the network, which can be beneficial in low-bandwidth or high-
latency environments. Additionally, federated learning can enable the training
of models that can be deployed on resource-constrained devices, such as IoT
sensors or mobile phones.

5.1.2 Federated learning domains

Federated learning is an approach that aims to leverage the benefits of
distributed AI model training. This approach is centered around three main
pillars:
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• Model optimization: Improves the model optimization process [3],
[4] for the local node by providing an aggregated (global) model that
contains knowledge accumulated by the aggregated models from all the
devices.

• Data privacy: Preserves the integrity, security, and privacy of the data
by keeping it at the edge nodes, rather than transferring it to a central
infrastructure.

• Resource optimization: Designed to optimize [3], [5] the use of
resources by communicating only the model parameters and some meta-
data between the federated server and the federated clients, instead of
transferring the entire dataset. This conserves network resources and
avoids possible bottlenecks, leads to lower latency, and allows for the
distribution of the computing power needed for the AI model train-
ing among various nodes. Additionally, it enables to use the remote
machines for the training process only when they are not used for other
purposes, are connected to a steady power supply, and/or when there is
a stable internet connection, which reduces the energy consumption of
the federated process.

5.1.3 Use cases and applications

Federated learning has a wide range of use cases and applications, including
but not limited to the following:

• Personalized healthcare can be used to train models that can predict a
patient’s health status or risk of developing a certain condition. This can
be done by aggregating data from multiple devices such as wearables,
smartphones, and hospitals. FL allows for the training of models without
compromising the privacy and security of the patient’s data, which is
particularly important in the healthcare industry.

• Mobile computing can be used to train models on the large amounts of
data generated by mobile devices such as smartphones and tablets. This
can be used to improve the performance of mobile applications, such as
natural language processing, image recognition, and more. For example,
federated learning can be used to train models that can predict the battery
life of a mobile device based on usage patterns.

• Internet of Things can be used to train models on data collected from
IoT devices such as sensors and cameras. This can be used to improve
the performance of edge computing applications, such as image and
video processing, anomaly detection, and more.
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• Banking and finance can be used to train models that can predict fraud-
ulent transactions, by leveraging data from multiple banking institutions
to train AI model, without actually transferring any data.

• Natural language processing can also be used to train language models
by aggregating data from multiple sources without compromising the
privacy of the data.

These are some examples of the utilization of the federated learning
methodology in a variety of different popular domains. However, FL is
continuously being adapted and tested to new applications as it is slowly
becoming the baseline for machine learning in modern distributed infrastruc-
tures.

Figure 5.2 Simple federated learning architecture.
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5.2 How Federated Learning Works

5.2.1 Overview of the architecture and process

Federated learning is a distributed machine learning methodology that allows
for the training of deep learning models on a large corpus of edge devices.
In this approach, models are trained locally on the edge devices, and their
weights are sent to a central server where they are combined to form a global
model using an algorithm such as federated averaging. The global model is
then sent back to the remote devices for use. The central server distributes
an initial global model to a population of federated devices, each of which
holds a set of local data and a local model. These models are trained on
the local data and the model weights are then retrieved by the central server
to be combined using a predefined fusion algorithm, to create a new global
model containing the new knowledge accumulated from the local models.
This process is repeated for a number of iterations until the global model
converges. Figure 5.3 shows a common process (strategy) followed to realize
an FL training between a server and a corpus of devices. Figure 5.3 showcases
a simple FL strategy for realizing a training session.

To get an idea about the modeling of the methodology process, we can
depict a mathematical formula. Of course, since the process is directly con-
nected to the fusion algorithm used, the FL process can be defined in a number
of ways. For simplicity, we shall use the federated averaging algorithm to
explain the process. Eqn (5.1) shows the process of fusing the local models
from the remote devices in one global model [6].

wk
G =

1∑
i∈N Di

N∑
i=1

Diw
k
i . (5.1)

Equation (5.1) Federated aggregation algorithm (FedAvg).
Here, the global model on the kth iteration is represented by wk

G and the
remote ith model at that iteration is represented by wk

i . Each node holds a set
of local data Di∈N and local models wi.

5.2.2 Key components

For the implementation of the described architecture, the system defines three
main components [7] in order to realize the operation of the training, namely,
a) the orchestrator, b) the aggregator, and c) the worker/client. Figure 5.2
shows how these components fit into the federated architecture.
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Figure 5.3 Simple federated learning pipeline.

5.2.2.1 Orchestrator
The orchestrator is responsible for managing the federated learning process,
including initiating the FL session, selecting the population of devices,
organizing the data, algorithm, and pipeline, setting the training context,
managing communication and security, evaluating the performance, and,
finally, synchronizing the FL procedure.

5.2.2.2 Aggregator
The aggregator is responsible for incorporating the updates from the local
models into the global model. In some cases, the orchestrator also acts as the
aggregator, particularly for smaller networks or certain security or operational
requirements. The aggregator also implements security and privacy measures
to protect the FL server and workers from any malicious actors.

5.2.2.3 Worker
The worker, also known as the party, is responsible for the local training that
takes place during the FL training session. The worker is the owner of the
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data and updates its model based on the newly received version of the global
model after the local training and global model generation by the aggregator.
The worker has the option of participating in the FL session or not, depending
on resource allocation or criticality.

The abovementioned components established the foundation of the
methodology. Depending on the type and nature of the deployment, these
components can have additional responsibilities and placement or some extra
components might be added. The different types of FL are described in the
next section.

5.2.3 Types of federated learning

There is a variety of different federated learning application types that depend
on a multitude of characteristics. A main characteristic that defines the type of
the methodology applied is the way that data and their features are distributed
and used by the different nodes. In particular, based on the data, we have the
following:

• Horizontal federated learning: This type of approach trains models
on data that is horizontally partitioned across different devices or enti-
ties. For example, training a model on data from different hospitals or
different companies (Figure 5.4).

• Vertical federated learning: This type of federated learning trains
models on data that is vertically partitioned across different devices or

Figure 5.4 Horizontal federated learning.
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Figure 5.5 Vertical federated learning.

entities. For example, training a model on data from different features of
the same patient (Figure 5.5).

• Federated transfer learning: This type of federated learning is focused
on adapting a model pre-trained on one dataset to another related dataset
(Figure 5.6).

However, the type of the federated learning approach used is not limited
to the distribution of the data for the specific use case but depends on other
characteristics such as the deployment constraints, the criticality of the data

Figure 5.6 Federated transfer learning.
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and infrastructure, and the nature of the task tackled. These preconditions
orient the methodology and technique to adapt to the problem at hand and
include the following approaches:

• Multi-party federated learning: This type of FL is similar to horizontal
FL, but the data is under multiple parties’ control. This type of federated
learning is useful for the scenarios where data is not centralized but
spread across multiple parties and each party wants to keep their data
private.

• Federated meta-learning: This type of FL is focused on training a
model that can adapt to new tasks or domains quickly by leveraging
knowledge from previous tasks or domains.

• Federated domain adaptation: This type of FL is focused on adapting
a model trained on one domain to work on another domain.

• Federated few-shot learning: This type of FL is focused on training a
model that can learn to classify new classes with only a few examples.

• Federated reinforcement learning: This type of FL is focused on
training a model using the reinforcement learning approach on the edge
devices.

5.2.4 Model fusion algorithms

As mentioned before, the underlying core of the training procedure is the
aggregation algorithm that undertakes the fusion of the distributed models
into one optimized global model. Thus, the aggregation algorithm is a crucial
component of FL as it determines the final performance of the global model.
The most commonly used aggregation algorithm is federated averaging,
which takes the average of the local models’ weights to form the global
model. However, there are other aggregation algorithms that can be used
depending on the specific use case. For example, some algorithms weigh
the contributions of the local models based on the quality of their data or
the computational resources available on the device. These algorithms can
help to mitigate the impact of data availability and device heterogeneity.
Additionally, some algorithms use techniques such as differential privacy to
protect the privacy of the data on the edge devices during the aggregation
process. Overall, the choice of aggregation algorithm can have a significant
impact on the performance and privacy of the final global model and should
be carefully considered when implementing FL. Table 5.1 presents some of
the common and state-of-the-art fusion algorithms that are widely used in
different settings.
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Table 5.1 Common fusion algorithms used in FL.
Algorithm Year Description Benefits
FedAvg [1] 2017 An iterative model aver-

aging FL framework
Reduces communication
cost by locally computed
updated aggregation

Zoo [8] 2018 Composable services to
deploy ML models locally
on edge

Reduces latency in data pro-
cessing, and minimizes the
raw data revealed

FedPer [9] 2019 Federated learning with
personalization layers

Improves results with data
heterogeneity, and commu-
nication cost

FedAsync
[10]

2019 Asynchronous federated
optimization framework

Improves flexibility and
scalability and tolerates
staleness

FedCS [11] 2019 Client selection for FL
with heterogeneous
resources

Improves performance and
reduces training time

BlockFL [12] 2019 Blockchained federated
architecture

Optimizes communication,
computation, and latency

FedMa [13] 2020 Federated matched aver-
aging algorithm for FL

Improves accuracy and com-
munication cost

FedAT [14] 2020 Synchronous intra-tier
training and asynchronous
cross-tier training

Improves accuracy and
reduces communication cost

5.3 Federated Learning vs. Traditional Centralized
Learning

Federated learning is different from traditional centralized learning [15] in
several ways. The most significant difference is that in traditional centralized
learning, the data is collected and stored in a central location, where it is used
to train the model. In contrast, federated learning keeps the data on the edge
devices and trains the model locally on each device. This allows for the train-
ing of models on large amounts of data without the need to transfer it and also
the ability to handle non-independent and identically distributed (IID) data.
Additionally, federated learning preserves data privacy and security as the
data never leaves the edge devices. This makes federated learning particularly
well-suited for scenarios where data is sensitive or distributed across multiple
devices. However, it is important to keep in mind that federated learning has
its own set of challenges such as communication overhead, data availability,
and model divergence.
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Table 5.2 Comparison between federated and centralized learning.
Federated learning Traditional centralized learning
Data remains on edge devices Data is collected and stored in a central loca-

tion
Model trained locally on each device Model trained on centralized data
Suitable for non-IID data Assumes data is IID
Preserves data privacy and security Data privacy and security may be at risk
Requires communication between
devices

No communication required between devices

Scales horizontally and vertically Scales vertically
Suitable for sensitive or distributed
data

Not suitable for sensitive or distributed data

Can handle many edge devices Limited by the amount of data that can be
centralized

Can have challenges such as commu-
nication overhead and model diver-
gence

Fewer challenges than federated learning

5.3.1 Advantages and disadvantages of federated learning

By itself and as it is probably apparent, the federated learning approach is vast
and, in its range, it encapsulates major advantages but also some drawbacks.
As in all fields, the optimal deployment of federated learning is the fine line
between the tradeoff of these advantages and drawback and strictly depends
on the application of the methodology. For example, there might be some
applications that require better model generalization but in expense of the
communication efficiency of the network. Table 5.3 enumerates some of these
advantages and disadvantages of federated learning in order to provide a
better view of its utility.

5.3.2 Real-world examples of federated learning

5.3.2.1 Smart farming
In smart farming, federated learning can provide several benefits [16] by
allowing for the training of models on data that is decentralized and spread
across multiple devices or entities. The use case integrates IoT data from
crops and animal care infrastructures, AR smart glasses, and other heteroge-
neous IoT devices, which can be difficult to source and gather in a central
place to train a single AI model. By utilizing federated learning, it allows
to train models on data that is distributed across great distances, making it
possible to:
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Table 5.3 Advantages and disadvantages of federated learning.
Advantages Disadvantages
Collaborative learning:
Allows multiple devices or entities to collabo-
ratively train a model while keeping their data
on-device. This allows for the training of models
on large amounts of data without the need to
transmit or centralize it.

Data availability:
Data availability can be an issue in
federated learning, as not all devices
or entities may have access to the same
data or may have data of different
quality.

Data privacy and security:
Allows for the training of models without com-
promising the privacy and security of the data.
This is particularly important in scenarios where
data is sensitive or distributed across multiple
devices.

Communication overhead:
Requires communication between the
devices or entities, which can be a
bottleneck, especially if the devices
are located in different geographical
locations.

Edge computing:
Allows devices to train models locally, which
can reduce the need for transmitting large
amounts of data over the network. Additionally,
it enables the training of models that can be
deployed on resource-constrained devices, such
as IoT sensors or mobile phones.

Model divergence:
Can suffer from model divergence,
where the local models may not con-
verge to a common global model due
to the non-IID data distribution on the
devices.

Handling non-IID data:
It is particularly well-suited for training models
on non-IID data that is commonly found in the
real-world scenarios.

Latency:
Can suffer from latency issues, as it
requires communication between the
devices or entities to exchange model
updates.

Scalability:
It is highly scalable and can handle a large
number of devices or entities.

Complexity:
Can be complex to implement and
requires a lot of communication and
coordination between the devices or
entities.

• Formulate best practices for farming and livestock production in expand-
ing the specific market by discovering weaknesses in the agricultural
systems and providing insightful predictions to help end-users make
informed decisions about their infrastructure’s operations.

• Formulate rules and quantified metrics for optimum conditions in terms
of (animal) behavior, psychiatry, food quality, nutrition, and agricul-
ture environment by training models on the diverse data sources from
different scenarios.

• Increase farm and livestock production by using AI-supported strategies
that improve agricultural systems’ sustainability, productivity, and risk.
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• Provide feedback on how to ensure proper decision support by using
the knowledge accumulated from the local models to improve the global
model.

5.3.2.2 Smart, sustainable, and efficient buildings
In the use case of smart, sustainable, and efficient buildings, FL can provide
several benefits [17]. By using IoT data in smart buildings to optimize the
energy footprint and automate building management using AI-based solu-
tions, FL can be used to train models on large amounts of data from multiple
devices or entities, while keeping the data on-device. This allows for the
training of models on large amounts of data without the need to transmit
or centralize it, which can help to preserve the privacy and security of the
data.

5.3.2.3 Industrial supply chains
In the context of the industrial supply chain use case, FL can provide sig-
nificant benefits by improving the forecasting accuracy [18] for fulfilling the
demand from retailers and agencies, who are attempting to satisfy the demand
from their consumers. This is achieved by utilizing the abundance of product
codes, complexity of certain manufacturing processes, and short lifetime of
most products in the supply chain, which make production scheduling and
market-oriented forecasting challenging. In this frame, FL allows for the
collaborative training of models across different supply chains of the end-
user, without the need to transfer or centralize the data. This can improve
the forecasting accuracy by leveraging the knowledge and data from different
product codes produced by the end-user. Additionally, the use of FL can pro-
tect the data privacy and resources of the end-user’s infrastructure, by keeping
the data on-device, and avoiding the need for centralizing and transferring it.
Furthermore, by applying this technique to optimize the forecasting accu-
racy and using the heterogeneous data from different product codes, it can
lead to the end-user’s better decision making and better supplier−customer
relationship.

5.3.2.4 Industrial infrastructures
In the use case of mixed reality and ML-supported maintenance and fault
prediction of IoT-based critical infrastructure, the benefit of FL is its ability to
predict the behavior of industrial devices, such as controllers, in order to iden-
tify potential defects and malfunctions. This enables the end-user to monitor
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and prevent problems in the operation of each industrial infrastructure. The
technique is applied to a large number of industrial devices that are divided
and installed in decentralized optical switches. The use case makes use of the
ability of federated learning to handle many edge devices, both horizontally
by scaling to more devices such as small form-factor pluggable (SFP) mod-
ules or switches and vertically by applying a hierarchical model optimization.
This allows for more efficient and accurate predictions and maintenance
operations for the critical infrastructure.

5.3.2.5 Medical sector
Federated learning can bring several benefits to the medical sector [19], [20],
particularly in a use case of a collection of hospitals across a large distance.
Some of the benefits include:

• Data privacy and security: Allows for the training of models without
compromising the privacy and security of the patients’ data. This is
particularly important in the medical sector where data is sensitive and
regulated.

• Handling non-IID data: It is particularly well-suited for training mod-
els on non-IID data, which is commonly found in the medical sector. By
training models on the local data from different hospitals, the models can
learn from diverse patient populations, resulting in more robust models.

• Edge computing: Allows hospitals to train models locally, which can
reduce the need for transmitting large amounts of data over the network.
Additionally, it enables the training of models that can be deployed on
resource-constrained devices, such as mobile devices used by clinicians
and nurses.

• Collaborative learning: Allows multiple hospitals to collaboratively
train a model while keeping their data on-device. This allows for the
training of models on large amounts of data without the need to transmit
or centralize it.

• Scalability: It is highly scalable and can handle a large number of
hospitals across a large distance. This makes it suitable for large-scale
healthcare studies and research.

• By using, hospitals can train models on their local data without sharing
any sensitive information across the network, while still being able
to build models that generalize well to different patient populations.
This can lead to better diagnosis, treatment, and ultimately patient
outcomes.
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5.4 Implementing Federated Learning

Implementing federated learning requires a few key components. First, a
centralized server is needed to aggregate the models trained on the local
devices and distribute the updated global model back to the devices. Second,
there should be a mechanism for the local devices to communicate with the
central server and securely exchange model updates. Third, a mechanism for
data partitioning is needed to ensure that the devices are training models on
non-overlapping data. Fourth, a method for combining the local models into a
global model, such as federated averaging, is necessary. Lastly, it is important
to have a way to evaluate the performance of the model and monitor the FL
process. Additionally, it is important to have a good understanding of the
underlying deep learning model and the data that are being used. It is also
important to consider the security and privacy aspects of the FL process, as
well as the network infrastructure to ensure that the devices can communicate
effectively with the central server.

5.4.1 Tools and frameworks available

Since its introduction, federated learning has continuously been explored and
integrated into a variety of commercial and industrial applications. To support
the migration from conventional deep learning, a lot of diverse frameworks
have been proposed and used to both deploy or experiment with the FL
methodology. Table 5.4 enumerates some of the most used frameworks that
exist today.

5.4.2 Challenges

Despite the many potential benefits of federated learning, there are still some
challenges that need to be addressed before it can be widely adopted. These

Table 5.4 Available federated learning frameworks and tools.
Framework Type
Tensorflow federated [21] Research
FATE [22] Production
Flower [23] Production/research
PySyft [24] Production/research
IBM federated [25] Production/research
Leaf [26] Research
OpenFL [27] Production/research
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include issues related to data privacy and security, as well as the need for
robust methods for aggregating updates from multiple devices. Additionally,
it requires the design of efficient algorithms to handle the high-dimensional
and non-IID data across the devices, and more. Therefore, it is an active area
of research and development, with many ongoing efforts aimed at addressing
these challenges and making the approach more practical and widely applica-
ble. Common challenges in the federated learning domain include problems
that derive by its innate nature, such as:

• Untrusted sources: O ne of the challenges is the presence of untrusted
sources, which can be devices or entities that may not have the same
level of security or data privacy as the other participants. This can lead
to potential breaches of security or privacy and can compromise the
integrity of the model.

• Adversarial attacks: FL is also vulnerable to adversarial attacks, where
an attacker may attempt to manipulate the local models or the global
model, leading to a decrease in the accuracy of the model.

• IID and non-IID data processing: FL requires the data distributed
across the devices or entities to be identically independently distributed
(IID), which is not always the case. In scenarios where data is non-IID,
the local models may not converge to a common global model, leading
to a decrease in the accuracy of the model.

• Synchronization problems: FL requires coordination and communica-
tion between the devices or entities, and synchronization problems can
occur if the devices or entities are not able to communicate or coordinate
effectively.

• Small number of participants: FL requires a large number of devices
or entities to participate in order to effectively train a model. If the
number of participants is small, the model may not be able to effectively
learn from the data.

• System infiltration: In FL, since the data is distributed across multiple
devices or entities, it can be vulnerable to infiltration by malicious actors
who can attempt to access the data or manipulate the models.

5.5 Conclusion

Federated learning is a novel methodology created on the basis of distributed
training of AI models, heavily oriented at keeping the distributed data private
while also optimizing the models and the resources used. It is particularly
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useful in the industrial and critical infrastructure domain, as it allows for
the integration and optimization of AI in these systems without compro-
mising their integrity. FL offers several advantages in terms of deployment,
scalability, and security; however, it also poses some challenges in terms of
implementation, communication, and model optimization, especially when
considering the distribution of the distributed resources. It is a status quo
in today’s AI applications. The chapter focuses on introducing the basics
of the federated learning methodology, the application of FL in decen-
tralized critical infrastructures, outlining the advantages and disadvantages
and different techniques used in the field. It provides practical examples
of FL’s deployment in various infrastructures such as power production
facilities, agricultural sensor networks, and smart homes and more while also
summarizing the currently available sources.
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[5] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh and D.
Bacon, “Federated Learning: Strategies for Improving Communication
Efficiency,” October 2016. W364W7352

[6] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y. C. Liang, Q.
Yang, D. Niyato and C. Miao, “Federated Learning in Mobile Edge
Networks: A Comprehensive Survey,” IEEE Communications Surveys
and Tutorials, vol. 22, no. 3, pp. 2031-2063, July 2020. W364W7352

[7] I. Siniosoglou, P. Sarigiannidis, V. Argyriou, T. Lagkas, S. K. Goudos
and M. Poveda, “Federated Intrusion Detection in NG-IoT Healthcare
Systems: An Adversarial Approach,” IEEE International Conference on
Communications, June 2021. W364W7352

[8] J. Zhao, R. Mortier, J. Crowcroft and L. Wang, “Privacy-Preserving
Machine Learning Based Data Analytics on Edge Devices,” AIES 2018
- Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and
Society, pp. 341-346, December 2018. W364W7352

[9] M. G. Arivazhagan, V. Aggarwal, A. K. Singh and S. Choudhary,
“Federated Learning with Personalization Layers,” December 2019.
W364W7352

[10] C. Xie, O. Koyejo and I. Gupta, “Asynchronous Federated Optimiza-
tion,” March 2019. W364W7352

[11] T. Nishio and R. Yonetani, “Client Selection for Federated Learn-
ing with Heterogeneous Resources in Mobile Edge,” IEEE Interna-
tional Conference on Communications, Vols. 2019-May, April 2018.
W364W7352

[12] H. Kim, J. Park, M. Bennis and S. L. Kim, “Blockchained on-device
federated learning,” IEEE Communications Letters, vol. 24, no. 6, pp.
1279-1283, June 2020. W364W7352

[13] H. Wang, M. Yurochkin, Y. Sun, D. Papailiopoulos and Y. Khaza-
eni, “Federated Learning with Matched Averaging,” February 2020.
W364W7352

[14] Z. Chai, Y. Chen, A. Anwar, L. Zhao, Y. Cheng and H. Rangwala,
“FedAT: A High-Performance and Communication-Efficient Federated
Learning System with Asynchronous Tiers,” International Conference
for High Performance Computing, Networking, Storage and Analysis,
SC, October 2020. W364W7352

[15] M. Asad, A. Moustafa and T. Ito, “Federated Learning Versus Clas-
sical Machine Learning: A Convergence Comparison,” July 2021.
W364W7352



114 Federated Learning Models in Decentralized Critical Infrastructure

[16] T. Manoj, K. Makkithaya and V. G. Narendra, “A Federated Learning-
Based Crop Yield Prediction for Agricultural Production Risk Manage-
ment,” 2022 IEEE Delhi Section Conference, DELCON 2022, 2022.
W364W7352

[17] U. M. Aïvodji, S. Gambs and A. Martin, “IOTFLA : AA secured
and privacy-preserving smart home architecture implementing federated
learning,” Proceedings - 2019 IEEE Symposium on Security and Privacy
Workshops, SPW 2019, pp. 175-180, May 2019. W364W7352

[18] T. Li, A. K. Sahu, A. Talwalkar and V. Smith, “Federated Learning:
Challenges, Methods, and Future Directions,” IEEE Signal Processing
Magazine, vol. 37, no. 3, pp. 50-60, August 2019. W364W7352

[19] M. Joshi, A. Pal and M. Sankarasubbu, “Federated Learning for Health-
care Domain - Pipeline, Applications and Challenges,” ACM Transac-
tions on Computing for Healthcare, vol. 3, no. 4, pp. 1-36, November
2022. W364W7352

[20] N. Rieke, J. Hancox, W. Li, F. Milletarì, H. R. Roth, S. Albarqouni,
S. Bakas, M. N. Galtier, B. A. Landman, K. Maier-Hein, S. Ourselin,
M. Sheller, R. M. Summers, A. Trask, D. Xu, M. Baust and M. J.
Cardoso, “The future of digital health with federated learning,” npj
Digital Medicine 2020 3:1, vol. 3, no. 1, pp. 1-7, September 2020.
W364W7352

[21] Federated Learning | TensorFlow Federated. W364W7352
[22] “Fate,” [Online]. Available: https://fate.fedai.org/.W364W7352
[23] “Flower: A Friendly Federated Learning Framework,” [Online]. Avail-

able: https://flower.dev/.W364W7352
[24] “PySyft - OpenMined Blog,” [Online]. Available: https://blog.openmin

ed.org/tag/pysyft/.W364W7352
[25] “IBM Federated Learning - IBM Documentation,” [Online]. Available:

https://www.ibm.com/docs/en/cloud-paks/cp-data/4.0?topic=models-fe
derated-learning-tech-preview.W364W7352

[26] “LEAF - A Benchmark for Federated Settings,” [Online]. Available: ht
tps://leaf.cmu.edu/.W364W7352

[27] “OpenFL - Creative expression for desktop, mobile, web and console
platforms,” [Online]. Available: https://www.openfl.org/.W364W7352

https://fate.fedai.org/.W364W7352
https://flower.dev/.W364W7352
https://blog.openmined.org/tag/pysyft/.W364W7352
https://blog.openmined.org/tag/pysyft/.W364W7352
https://www.ibm.com/docs/en/cloud-paks/cp-data/4.0?topic=models-federated-learning-tech-preview.W364W7352
https://www.ibm.com/docs/en/cloud-paks/cp-data/4.0?topic=models-federated-learning-tech-preview.W364W7352
https://leaf.cmu.edu/.W364W7352
https://leaf.cmu.edu/.W364W7352
https://www.openfl.org/.W364W7352


References 115

[28] L. Li, Y. Fan, M. Tse and K. Y. Lin, “A review of applications in
federated learning,” Computers & Industrial Engineering, vol. 149, p.
106854, November 2020. W364W7352

[29] I. Siniosoglou, P. Sarigiannidis, Y. Spyridis, A. Khadka, G. Efstathopou-
los and T. Lagkas, “Synthetic Traffic Signs Dataset for Traffic Sign
Detection & Recognition in Distributed Smart Systems,” Proceedings
- 17th Annual International Conference on Distributed Computing in
Sensor Systems, DCOS 2021, pp. 302-308, 2021. W364W7352




