
3
Tactile IoT Architecture for the

IoT–Edge–Cloud Continuum: The
ASSIST-IoT Approach

A. Fornes-Leal1, I. Lacalle1, C. E. Palau1, P. Szmeja2, M. Ganzha2,
F. Konstantinidis3, and E. Garro4

1Universitat Politècnica de València, Spain
2Systems Research Institute Polish Academy of Sciences, Poland
3Institute of Communications and Computer Systems, National Technical
University of Athens, Greece
4Prodevelop SL, València, Spain
E-mail: cpalau@dcom.upv.es; alforlea@upv.es; iglaub@upv.es;
Pawel.Szmeja@ibspan.waw.pl; maria.ganzha@ibspan.waw.pl;
fotios.konstantinidis@iccs.gr; egarro@prodevelop.es

Abstract

This chapter describes the ASSIST-IoT approach for tactile IoT, proposing
a reference architecture built on cloud-native concepts in which several
enabling technologies (AI, cloud/edge computing, 5G, DLT, AR/VR inter-
faces, etc.) are integrated to implement advanced tactile IoT use cases,
providing a set of guidelines, best practices, and recommendations toward
this end.

Keywords: Reference architecture, next-generation IoT, cloud-native, Tactile
Internet, enablers.

3.1 Introduction

With IoT consolidated in several application domains, the next-generation
IoT (NG-IoT) has emerged, aiming at addressing more ambitious and

37



38 Tactile IoT Architecture for the IoT–Edge–Cloud Continuum: The ASSIST-IoT

complex use cases. Different enabling technologies have been identified as
key toward this evolution, such as edge computing, 5G, artificial intelligence
(AI) and advanced analytics, augmented reality (AR), digital twins, and dis-
tributed ledger technologies (DLTs). Still, there is not available any reference
architecture (RA) that provides (technical and non-technical) requirements,
guidelines, best practices, and recommendations that serve as blueprint for
developing and implementing such systems, that being one of the main
objectives of the ASSIST-IoT project.

Developing such RA thinking on its further adoption is crucial, and hence
it tries to avoid a very high level of abstraction, selecting a set of design
principles that consider current and expected trends in the IoT and enabling
technologies communities. In this sense, the cloud-native paradigm (based on
microservices, containerization, and DevOps practices) is embraced, adapted
to the edge-cloud computing continuum as a baseline for its conception.
Because of it, the RA will strive to bring flexibility, scalability, and ease
of integration, which are crucial for coping with the continuous and fast
evolution of the NG-IoT ecosystem as well as to help consolidate the imple-
mentation of tactile IoT across different business sectors, which are needed
by the industry [1].

3.2 Concepts and Approach

Reference architectures are usually intended to be generic; so they can be
applicable to different sectors or application domains. The RA developed in
ASSIST-IoT follows the approaches and vocabulary specified in the standard
ISO/IEC/IEEE 42010 [2], which is widely used in many modern RAs. Among
the vocabulary used, the following terms are key in the conception of the
presented architecture:

• Stakeholder: Individual, team, organization, or classes thereof, having
an interest in a system [2]. They might be technology-focused or not,
ranging from developers to testers, maintainers, administrators, and end
users, among others [3].

• Concern: Topic of interest of one or more stakeholders to the archi-
tecture [4]. It includes needs, goals, expectations, requirements, design
constraints, risks, assumptions, or other issues belonging to the system-
of-interest [2].

• View: Work product representing the architecture from the perspective
of specific system concerns [2], depicting how the architecture tackles
them.



3.2 Concepts and Approach 39

• Perspective: Collection of tactics, activities, and guidelines to ensure
that a system displays a specific property, which should be considered
across the views [3]. Perspectives are also referred to as system charac-
teristics, although in ASSIST-IoT, the term vertical is used instead, rep-
resenting not just properties but also functional blocks solving specific
cross-cutting concerns.

IoT applications can be simple, composed of a less number of devices,
with a basic frontend−backend-database schema and relaxed communication
requirements in terms of latency and bandwidth. However, as IoT systems
grow in size and complexity and NG-IoT requirements come to play, software
architectures are highly recommended as a starting point to design them
as well as to solve the specific needs or issues that may arise. There are
different software architecture patterns [5], which could be combined in
some cases: layered, event-driven, space-based, serverless, based on services,
etc., and among the latter, monolithic, service-oriented architectures (SOA),
and microservices. The ASSIST-IoT RA will consist in a layered architec-
ture based on services, which is a result of the influence of cloud-native
approaches over typical IoT representations.

3.2.1 Design principles

NG-IoT enables more appealing applications at the expense of complexity.
Complementary technologies should be integrated depending on the use case
addressed, and hence modularity and agile adaptation cycles must be ensured.
The principles that govern the ASSIST-IoT RA are:

1. Microservices: The RA, apart from following a layered, multi-
dimensional approach (see the next sub-section), proposes following
a microservices pattern, allowing independent, self-contained services
to be deployed and scaled while specifying boundaries and allowing
coding freedom. All services should declare their own, well-defined
communication interfaces.

2. Containerization: Virtualization, specifically in the form of con-
tainers, is key for deploying the services and decoupling them
from the underlying hardware resources. They have much larger
community support than alternatives such as unikernels or server-
less, while being lighter, faster, and more flexible than virtual
machines (VMs), and thus they are fostered in the cloud-native
paradigm.



40 Tactile IoT Architecture for the IoT–Edge–Cloud Continuum: The ASSIST-IoT

3. Enablers: An enabler is a collection of software, running on
computation nodes, which delivers a particular functionality to the sys-
tem. It is formed by a set of interconnected components, realized as
containers, and exposing a set of well-defined interfaces (internals are
not exposed or accessible). They can be essential (needed at all or most
deployments), optional, or relevant only for certain use cases. Some
features, due to containerization inconvenience or unfeasibility, should
be implemented directly as a host operating system’s (OS) service.

4. Kubernetes: A container orchestration framework provides many ben-
efits, as automation of rollouts/rollbacks, error handling, and resource
optimization (upscaling/downscaling) and, most importantly, bridges the
gap from development to the market. K8s, although not mandated, is
selected for being the de facto standard, and some decisions have been
made considering it.

3.2.2 Conceptual approach

The conceptual architecture has been envisioned considering not only pre-
vious IoT schemas and cloud-native concepts but also the advancements
in enabling technologies (e.g., edge computing, AI, SDN/NFV paradigm),
outcomes from previous and concurrent projects, partners’ expertise, and
extensive research, being influenced primarily by the LSP programme [6], the
OpenFog consortium [7], and AIOTI HLA [8]. The conceptual architecture
is two-dimensional, primarily focused on the functional features, grouped in
four layers or planes (device and edge, smart network and control, data man-
agement, and application and services), representing collections of features
that can be logically layered on top of each other, intersected by cross-cutting
properties, or verticals (self-*, interoperability, scalability, manageability,
and security, privacy, and trust), as seen in Figure 3.1.

3.3 Architecture Views

The views described in the following sections compose, altogether, the whole
scope of the architecture; separately, they represent an observation prism of
the whole specification fit to the wills of a group of stakeholders. Five views
have been developed: functional, development, node, deployment, and data,
following a customized Kruchten’s model [9], coined “41

2+1,” after splitting
its development view into two (development and deployment). The relation
among them can be seen in Figure 3.2.



3.3 Architecture Views 41

Figure 3.1 ASSIST-IoT conceptual architecture.

3.3.1 Functional view

This view, sometimes referred to as logical, represents the functionalities
provided by a system, which is crucial for developers and maintainers as well
as users and acquirers of the solution. A set of enablers are introduced for
each of the planes (Figure 3.3), always considering that a system realization
could require only a subset of them and/or include additional ones tailored
to it.

3.3.1.1 Device and edge plane
This plane is in charge of (i) providing the infrastructure elements (e.g.,
computing nodes, networking elements, etc.) needed for interacting with end



42 Tactile IoT Architecture for the IoT–Edge–Cloud Continuum: The ASSIST-IoT

Figure 3.2 Custom 4 1
2

+1 model of relation among views in ASSIST-IoT RA.

Figure 3.3 Functional view summary representation.



3.3 Architecture Views 43

Figure 3.4 ASSIST-IoT’s GWEN (left); infrastructure elements and functional blocks of the
device and edge plane (right).

devices, sensors, and actuators, and integrating them with the rest of the
architecture, and (ii) offering a set of (hardware/software/firmware) features
that help realizing intelligence, pre-processing, and communication opera-
tions at the edge (e.g., from GPUs/FPGAs to AI frameworks, local processing
functions, protocol adapters, specific extensions for communication protocols
like LoRa, and ZigBee; whatever needed for a specific system realization).
As a matter of fact, the project has designed (and developed) its own gate-
way/edge node (GWEN), which, apart from the required processing and
storage resources, implements common interfaces and baseline functions
needed for the RA to perform (firmware, OS, container engine, K8s, and
pre-installed plugins). It is modular, meaning that features can be extended
via expansion boards and SD slots. Regarding actual enablers, none has been
defined in advance, as they are expected to be tightly coupled to the actual
needs of the use cases addressed by a given system realization. Figure 3.4
presents a high-level schema of the GWEN, as well as the infrastructure and
functional blocks of the plane.

3.3.1.2 Smart network and control plane
This plane hosts different communication and orchestration features, for
deploying and connecting virtualized functions. A set of enablers have been
selected as relevant (or, at least, interesting) for NG-IoT system realizations,
grouped into four functional blocks: “orchestration,” “software-defined net-
works,” “self-contained networks realization,” and “access networks manage-
ment,” as depicted in Figure 3.5. The smart orchestrator, designed considering
ETSI MANO specifications [10], is the main enabler of the plane. It is
in charge of controlling the lifecycle of other enablers (network and non-
network-related) to be deployed on top of the virtualized infrastructure,
managed by K8s, selected for being de facto standard toward cloud-native



44 Tactile IoT Architecture for the IoT–Edge–Cloud Continuum: The ASSIST-IoT

Figure 3.5 Enablers and functional blocks of the smart network and control plane.

paradigm [11]. Additionally, it performs intelligent resource scheduling
operations (i.e., selecting the optimal place of the continuum for deploying
an enabler) and applies communication rules and encryption among
enablers.

Different adoption strategies for SDN in NG-IoT have been studied [12].
This RA presents a block devoted to it, consisting of (i) a controller, which
manages the underlying SDN-enabled network; (ii) an auto-configurable
network enabler, which acts over the controller to set policies optimally;
and (iii) a traffic classification enabler, which identifies the type of traffic so
networking rules are applied properly. This functional block is complemented
by the programmatic rules that the orchestrator applies over the virtualized
network.

The functional block related to self-contained networks includes enablers
that provision secured channels over public or non-trusted networks. Three
enablers are envisioned: one for establishing VPN tunnels for connecting
isolated devices to a managed network and two for implementing SD-WAN,
which follows a controller-agent schema to connect delocalized networks
and to enable firewalling or application-level prioritization functions. Finally,
within the access network management block, a multi-link enabler has been
formalized, providing mechanisms for bonding different access networks
to work as a logical, single one, thus bringing redundancy and reliability
features.



3.3 Architecture Views 45

Figure 3.6 Enablers and functional blocks of the data management plane.

3.3.1.3 Data management plane
Traveling over the network layer, data will be shared, processed, and stored
to be later on consumed by business/administrator applications and services.
Five enablers are defined in this plane, separated into semantics and data
governance blocks as one can see in Figure 3.6, supported by security,
privacy, and trust mechanisms provided by enablers of such verticals. Data
governance enablers include (i) a long-term storage enabler (LTSE), offering
a dynamic, distributed space for highly available data persistence, accessible
via API; and (ii) an edge data broker enabler (EDBE), key element for realiz-
ing data pipelines (Section 3.3.5), providing mechanisms for distributing data,
filtering, and alerting, following scalable publication−subscription schemas
aligned with current IoT trends.

Complementary to the data storage and transportation, a semantic frame-
work is proposed to process (streaming and bulk), share, and present data.
This framework includes (i) semantic annotation, for lifting data to fit a
specific semantic format; (ii) semantic translation, for mediating between data
that follow different ontologies or data models; and (iii) semantic repository,
as a “hub” of data models, schemas, and ontologies, complemented with
relevant documentation.

3.3.1.4 Applications and services plane
The upper plane is devoted to provide human-centric, user-friendly access to
data, for both administrators and end users, including externals to a system
realization. Three functional blocks have been identified (see Figure 3.7),
with a set of enablers that, as occurs with the rest of the planes, could be
extended.



46 Tactile IoT Architecture for the IoT–Edge–Cloud Continuum: The ASSIST-IoT

The enablers allocated within the dashboards functional block are (i)
the tactile dashboard, i.e., the main entry point to the system that will be
used by administrators and users, with spaces accessible according to the
provided credentials. It can provide mechanisms to add graphical interfaces
to such application; (ii) the business KPI enabler, which allows administrators
to prepare representation figures for metrics and indicators to be consumed
by the stakeholders; and (iii) the performance and usage diagnosis enabler,
which collects both system and enablers performance-related metrics.

Then, for tactile applications, two enablers are defined: the mixed reality
and the video augmentation enabler. The former offers mechanisms for
human-centric interaction, based on real-time and visual feedback and data
from/to the system and the environment. It works jointly with hardware
equipment; so the provided features and representations are largely influenced
by it. The latter performs real-time computing vision functionalities over
images or video streams (particularly, object detection and recognition), with
recommended support from acceleration hardware. It should be highlighted
that these enablers focus on particular augmentation capabilities, and addi-
tional ones could be thought for providing additional features from tactile
and/or haptic interfaces.

Lastly, the OpenAPI manager allows exposing and monitoring API inter-
faces so that users and third-party systems can consume deployed enablers
of the system. This enabler should be properly integrated with security
enablers (i.e., identity manager and authorization server) to ensure that only
rightful users/systems have access and to expose documentation to ease their
respective usage.

Figure 3.7 Enablers and functional blocks of the applications and services plane.



3.3 Architecture Views 47

3.3.2 Node view

This view presents structural guidelines and recommendations to provision
nodes that can be later on leveraged in NG-IoT systems. The provided data
can be useful for stakeholders like hardware developers, edge devices, or
gateway providers, as well as developers and maintainers of an ASSIST-
IoT system. Nodes should not be understood as physical equipment but as
a virtualized resource (e.g., a powerful physical server might host several
virtual nodes); they can be placed on different tiers of the continuum (edge,
fog, and cloud) and will likely have varying computing capabilities. Thus, to
be ready as a node, a set of pre-requisites must be fulfilled:

• A K8s distribution must be installed (kubeadm and K3s encouraged),
with a compatible container runtime (Docker recommended) and a
Linux OS (the latter is not needed if K8s on bare metal is installed).

• A set of plugins for managing packages (Helm), storage classes
(OpenEBS), and local and multi-cluster networking (Cilium). These
specific plugins mentioned are not mandated but are compatible with
the enablers developed in ASSIST-IoT.

Figure 3.8 ASSIST-IoT node concept and spots.



48 Tactile IoT Architecture for the IoT–Edge–Cloud Continuum: The ASSIST-IoT

3.3.3 Development view

This view aims at offering some guidelines and recommendations to ease the
design and development of enablers, useful for developers and maintainers.
Despite the project developing enablers for the different planes and ver-
ticals, it is possible that future systems rooting from ASSIST-IoT might
require additional features. Enablers are to be designed respecting the prin-
ciples of the RA, following some common conventions and considering the
DevSecOps methodology [13] from the project. In particular, we have the
following:

• Virtualization: Enablers should be deployable independently, and each
of its components (inner functions) should be delivered in containers.

• Encapsulation: Enablers can communicate between each other, and
with external clients, via explicitly defined and exposed interfaces (typi-
cally but not limited to REST APIs). Enablers’ internal components are
not exposed by default.

• Manageability: Enablers should expose a set of basic endpoints and
logs (through stderr and stdout interfaces), following standard con-
ventions for providing their status (e.g., with HTTP response codes
and considering all the inner components), version (considering SemVer
specifications), API documentation (Open API specifications), and rele-
vant metrics (Prometheus-compatible format encouraged).

The process for designing and developing enablers is depicted in Fig-
ure 3.9, consisting in six main steps: (i) definition and formalization of
requirements, considering its key features, main (software and hardware)
constrains, and applicable use cases; (ii) breakdown of internal components,
including its exposed interfaces and its internal communication; (iii) ini-
tial design of the endpoints to expose, including the manageability ones
previously mentioned (i.e., /health, /version, /api, /metrics); (iv) baseline
technologies and programming languages to leverage, avoiding reinventing
the wheel while focusing on decentralization and resource optimization;
(v) if data are involved, (sector, regional, and national) privacy regulations
and ethical aspects should be considered; and once development starts, (vi)
DevSecOps methodology should be followed [13], ensuring that the final
result is secure by design. As additional tips, the use of verified container
images, initial proofs of concept considering Docker compose tool before
moving to K8s, and the provisioning of CI/CD pipelines for automating
DevSecOps processes, including unit, functional, and security testing, are
encouraged.



3.3 Architecture Views 49

Figure 3.9 Continuous enablers’ development process.

3.3.4 Deployment view

The deployment view addresses different concerns that can be useful, espe-
cially for network and system administrators (as well as developers and
maintainers), such as hardware provisioning (computation nodes and net-
working elements), K8s setup, and the deployment of enablers and their
integration to address a use case or business scenario.

3.3.4.1 Infrastructure and Kubernetes considerations
The computing continuum can be decomposed into tiers, each of them con-
sisting of a set of nodes, extending from end devices (smart IoT devices, and
MR/AR/VR interfaces) to edge (with one or multiple levels) and cloud, if
needed. Being K8s strongly encouraged as virtualized infrastructure manager,
the underlying connection among nodes must be IP-based (with the exception
of the access network, as interfaces between end devices and edge gateways
might involve other forms of communication, e.g., LPWAN and BLE). A
generic topology is presented in Figure 3.10. A system topology design
will strongly depend on the business scenario, security, and decentralization
aspects, as well as economic reasons.

Regarding K8s, computing nodes are grouped into clusters, where at
least one acts as master, in charge of control plane actions, and the rest as
workers (which execute workloads). Some aspects that should be considered
for a proper implementation include: (i) clusters should consist of nodes with
similar performance; (ii) a multi-tier topology suggests having a master in
control, rather than a master in charge of different tiers; (iii) if new nodes are



50 Tactile IoT Architecture for the IoT–Edge–Cloud Continuum: The ASSIST-IoT

Figure 3.10 Generic topology of an NG-IoT system.

added to an existing tier, better to do it as workers to avoid devoting more
resources to control plane tasks (unless done for high availability strategies);
and (iv) K8s management is outside the scope of the architecture, despite
requiring some minimum requirements (e.g., plugins and add-ons) that should
be provisioned by network administrators. In any case, best practices for K8s
security are encouraged [14] for any system realization.

3.3.4.2 Enablers deployment
The main and recommended tool for instantiating enablers over the man-
aged computing continuum is the smart orchestrator, considered an essential
enabler of the system. After provisioning the infrastructure, network, and K8s
clusters, the latter must be registered in the orchestrator (individually, or as
part of a group of clusters), and from this moment, a platform administrator
can deploy enablers over them, either manually or automatically based on
a desired policy. The orchestrator developed within ASSIST-IoT considers
Helm as the packaging technology, but other formats (custom-made based
on K8s manifests, Juju, or Kustomize) could have been used (and thus an
orchestrator designed based on the selected one/s).

It is perfectly possible to deploy enablers directly over the managed
continuum via Helm commands or utilizing third-party management software
like Rancher Fleet. However, some of the additional features provided by the
orchestrator, such as automatic application of networking rules, policy-based



3.4 Verticals 51

automatic scheduling, and mobility mechanisms for clusters without public
or/nor fixed IP addresses are no longer supported.

Regarding enablers integration, ASSIST-IoT does not force that every
expected or possible integration be realized, as there are just many arti-
facts, data schemas, technologies, etc. Still, when deemed necessary, some
enablers’ implementations made within the scope of the project have been
integrated. On the one hand, some cases were evident, like the semantic
suite (Section 3.3.1.3), the federated learning enablers (Section 3.4.3.2), or
the security enablers (Section 3.4.3.1) related to identity management and
authorization. On the other hand, other interactions were evaluated and, in
some cases, integrated requiring higher or lower effort, like the OpenAPI
manager with identity management, the manageability enablers with the
smart orchestrator, or the tactile dashboard with BKPI and PUD enablers,
among others. Besides, manageability enablers provide some mechanisms
to provision agents within the right spot of the continuum as “integration
bridges,” providing translation of transport protocols (e.g., MQTT to MQTT)
and basic data formatting capabilities.

3.3.5 Data view

This view, useful for data engineers as well as developers and maintainers,
provides an overview of the flow of data within a system, with respect to
their collection, processing, and consumption, specifying the actions made
by the enablers (and other artifacts) over them. ASSIST-IoT introduces
data pipelines as an abstraction design that represents such flows, avoiding
information related to the underlying hardware infrastructure or network-
related enablers. In essence, these pipelines present a linear sequence of steps
where data are transmitted between data processing elements, from a given
source/s (e.g., services, endpoints, devices, sensors, and outputs from another
pipeline/s) to an output/s or sink/s (e.g., database, dashboard, log gatherer,
source of following data pipeline/s, or simply deleted). Data travel as mes-
sages, through different paths, and having a specific format and content. An
example of data pipeline is presented in Figure 3.11. In such representations,
data sources, protocols and payload types, as well as enablers and services
involved should be easily identifiable, accompanied with dedicated textual
explanation when needed but trying to keeping them readable (i.e., avoiding
gratuitous details). In any case, these representations do not aim to substitute
other typical, dedicated UML or similar diagrams, but rather complement
them.



52 Tactile IoT Architecture for the IoT–Edge–Cloud Continuum: The ASSIST-IoT

Figure 3.11 Data pipeline example.

3.4 Verticals

Verticals represent or provide NG-IoT properties and capabilities that
(should) exist on different planes, either in an independent way or requiring
cooperation from them. Five verticals have been identified as crucial for the
development of NG-IoT systems, namely self-*, interoperability, scalability,
manageability, and security, privacy, and trust. In some cases, capabilities
are implemented through dedicated enablers (see Figure 3.12), while in
others, they are the result of the design principles embraced. As with planes,
some of them might not be needed for addressing certain use cases, and

Figure 3.12 Enablers addressing verticals.



3.4 Verticals 53

envisioning additional ones for bringing unavailable capabilities to a system
is not precluded.

3.4.1 Self-*

This vertical refers to enablers implementing system autonomy capabili-
ties, able to make intelligent decisions, where humans just manage them
by policies (or just installing them) rather that manually acting over the
involved mechanisms. According to IBM, eight conditions should be fulfilled
to consider a mechanism as self-* [15].

Particularly, five enablers have been identified to extend the capabilities
already present due to architecture design choices. (i) Self-healing enabler:
considering K8s provides a set of healing mechanisms over managed ser-
vices, this enabler extends them to the node itself, collecting data (e.g.,
battery and CPU usage, memory access, and network state), evaluating them,
determining, and applying the optimal healthy remediation process. (ii) Self-
resource provisioning: K8s also provides resource autoscaling mechanisms
for services − still, these are static, meaning that once their behavior is
set, they can only be changed manually. This enabler develops models of
other deployed enablers to forecast their behavior, modifying the performance
of these scaling mechanisms on-the-fly, without human intervention. (iii)
Location tracking and (iv) processing enablers: these enablers work together
for bringing contextual location data, with dedicated hardware and firmware
extensions, and providing configurable and flexible geofencing capabilities
based on such data, using either batch or streaming approaches. (v) Monitor-
ing and notifying enabler: responsible for monitoring devices and notifying
malfunctioning incidents, ensuring that telemetry data are sent and presented
while validating its own performance. (vi) Automated configuration enabler:
it allows users to define requirements (resources) needed to meet specific
functionalities, and reactions over external actions or change of the pool of
resources, all in an abstract way. In case of limited resources, the system
will automatically decide which functionalities are kept, modifying existing
configurations and emitting related messages and logs.

3.4.2 Interoperability

This vertical represents the ability of systems, devices, and/or applications
to communicate together on the same infrastructure or on another while
roaming. The IoT field, and by extension, NG-IoT systems, are heterogeneous



54 Tactile IoT Architecture for the IoT–Edge–Cloud Continuum: The ASSIST-IoT

in terms of hardware, data, and applications, and, hence, mechanisms that
ease devices connection, data sharing, and service communication are needed
to facilitate the adaptation of novel technologies and services. Interoperability
is present at different levels, rather than addressed as enablers: (i) technical,
when two or more information and communication technologies are able to
accept data from each other; (ii) syntactic or structural, when two systems
communicate and exchange data using compatible formats and protocols;
and (iii) semantic, which entails applications and systems sharing the same
understanding of the exchanged data.

Although any enabler has been directly assigned to this vertical, it is
present through different enablers of the architecture. For instance, SDN-
related enablers allow governing a networking infrastructure with hardware
from different vendors autonomously, based on policies; the semantic suite
brings processing and translation capabilities to store data and share them
following specific ontologies or data models, enabling effective cooperation
among IoT artifacts; also, the use of smart contracts coming from DLT-
related enablers of the next vertical, allowing metadata management and
non-repudiation from different sources or systems; in self-* localization
tracking, various geospatial data sources can be combined (UWB and GPS);
in federated learning (FL) suite (Section 3.4.3.2), enablers provide mech-
anisms to run on different clients and to accommodate training data from
different formats, etc. Besides, although an interoperability suite like that in
[16] could have been defined, its usage would require extensive knowledge
of the several available mechanisms, and, hence, implementing them as
independent enablers when needed is preferred instead.

3.4.3 Security, privacy, and trust

This vertical should be considered meticulously, as perceiving a system as
unsecure, untrusted, or privacy-disrespectful would destine it to fail. Many
mechanisms can be grouped under this vertical; the provided content is
extended in [17].

3.4.3.1 Security
This pillar involves several aspects, from good practices for development
and data access by design (e.g., DevSecOps) to enablers that provide con-
fidentiality, integrity, availability, authentication, and authorization. Here, the
following enablers have been defined:



3.4 Verticals 55

• Identity manager (IdM) and authorization enablers: They offer
(i) access control based on user/devices/system identity, and (ii)
authorization over protected resources. The ASSIST-IoT RA depicts a
decentralized approach, where decision-making features can be moved
from a central point to distributed endpoints, sharing security policies
(previously set by an administrator) to apply.

• Cybersecurity monitoring enabler, and monitoring agents: The cen-
tral enabler consolidates the data collected by the agents distributed
through the continuum to provide cybersecurity awareness, visibility,
and response against detected threats.

Besides, additional considerations are presented. First, the OpenAPI man-
agement enabler from the applications and services plane includes a gateway,
envisioned as primary access mechanism for (HTTP) third-party access.
In this way, a single point should be exposed, secured, and documented,
reducing the number of attack surfaces; and hence the IdM and authorization
enablers must be integrated with this one. Second, when MQTT is the main
communication protocol, different security mechanisms should be assessed,
especially when the network is not considered secured or trusted. These
include protection at (i) network level, providing tunnels between clients
and brokers; (ii) transport level, encrypting data using SSL/SSL and certifi-
cates; and (iii) application level, considering user-password credentials (or
Access Control List files) to grant or deny access, including the possibility of
allowing nodes to publish or be subscribed only to specific topics.

3.4.3.2 Privacy
Privacy aims at protecting the information of individuals or private data
from exposure in NG-IoT environments. In ASSIST-IoT, a set of rules for
preserving it during development has been made, and, in addition, an FL suite
for training ML algorithms in a decentralized environment has been designed,
in which actual data is not exchanged but only the trained models. This suite
is composed of (i) the central orchestrator, responsible for declaring the FL
pipeline and control the overall lifecycle, including job scheduling and error
handling; (ii) a repository, providing storage for ML algorithms, aggregation
approaches, and trained models, supporting the rest of the enablers; (iii)
local operations component, installed in the distributed nodes to perform data
format verification and transformation, local model training, and inference,
among other tasks; and (iv) training collector, which aggregates the models
updated by the managed nodes and redistributes the combined model.



56 Tactile IoT Architecture for the IoT–Edge–Cloud Continuum: The ASSIST-IoT

3.4.3.3 Trust
Trusts represents the level of confidence of the devices, data, or sys-
tem of an ecosystem [18]. The RA does not delve on best practices and
recommendations related to this, as there exist dedicated projects focusing
on it [19]; still, it defines a set of enablers, based on DLT, for easing the
implementation of trusted decentralized ecosystems: (i) logging and audit-
ing, for storing critical actions and having a trusted source of truth; (ii)
data integrity verification, based on hashed data; (iii) distributed broker, to
facilitate data sharing of devices from different edge domains; and (iv) DLT-
based FL enabler, an auxiliary component of the FL suite to manage ML
contextual information, preventing any data alteration. Before using them, it
is important to decide which events and data are critical, as data are replicated
on the ledgers, and storing many data can cause performance issues.

3.4.4 Scalability

The RA pretends enabling elastic implementations, where hardware (node
and system level), software, and services can be scaled up/down as seamlessly
for adopters as possible. In ASSIST-IoT, this vertical does not result from
the action of specific enablers, but rather due to design choices made and
the use of K8s (or any similar container orchestrator framework), primar-
ily. In this RA, we can find first hardware scalability, contemplating (i)
processing, having nodes with constrained resources, like PLCs, to high-
performance servers with large GPU arrays; (ii) storage, from simply flash
chips to large arrays of storage clusters; (iii) network interfaces, with nodes
having a single (wired and wireless) interface to others having several of
them, with aggregation capabilities; and (iv) system, considering small-size
to large-size, decentralized topologies, including possible business scenarios
with thousands of clusters. The GWEN also incorporates mechanisms fos-
tering this scalability dimension, through the expansion boards and modules
through which storage, access networks, and computation capabilities could
be expanded, if needed.

Besides, software scalability is also crucial, involving not just the deploy-
ment of services and applications but also the optimal scheduling of the
managed resources. Regarding the latter, the use of K8s distributions, along
with the smart orchestrator and resource provisioning enabler, guarantees that
once a (software) feature is deployed over the infrastructure as an enabler, it
(i) has its required resources, and (ii) can be scaled up/down automatically
based on current and forecasted usage. Besides, being a microservices-based



3.5 Conclusion 57

RA and using containers as virtualization paradigm, features are decoupled
by nature and can be developed and integrated quite easily, thanks to their
respectively exposed interfaces. Additional guidelines and best practices can
be found in [17].

3.4.5 Manageability

The last vertical responds to concerns related to the management of the
overall system and the required enablers. Tools are needed to register and
manage (large volume of) K8s clusters and enablers, including mechanisms
to (i) detect and inform about faults, (ii) allow configuration options of the
enablers to be deployed, (iii) enabling processes for storing and sharing logs
and metrics of enablers and clusters, and everything (iv) in a secure and user-
friendly manner. Along with the implementation of common endpoints for
enablers depicted in Section 3.3.3, the following manageability enablers have
been defined:

• Clusters and topology manager: It allows to register/delete clusters
to the system, ensuring that they are working properly and providing
graphical data of their distribution and hosted enablers.

• Enabler manager: Eases the management of enablers, in a graphical
way, from the registration of enabler repositories to their instantiation
(also configuration), logs consumption, and deletion.

• Composite services manager: It eases the flow of data between
enablers, by provisioning interoperability agents that provide proto-
col (e.g., MQTT-HTTP) and basic payload translations. It includes a
graphical interface to configure these agents, which are then deployed
optimally within the continuum.

3.5 Conclusion

This chapter describes the reference architecture developed within the
framework of H2020 ASSIST-IoT project, following cloud-native principles
adapted to the edge−cloud computing continuum for next-generation, tactile
IoT, providing a set of guidelines, best practices, and recommendations.
It is based on microservices, using containers and Kubernetes as main
virtualization technologies, as well as coining the concept of an enabler.
Functionalities will be delivered in the form of these, which will belong to one
of the planes (device and edge, smart network and control, data management,
and application and services) or verticals (self-*, interoperability, scalability,



58 Tactile IoT Architecture for the IoT–Edge–Cloud Continuum: The ASSIST-IoT

manageability, and security, privacy, and trust) of the multi-dimensional
approach of the architecture.

Since providing such information in an all-encompassing model would
hinder its comprehension, the architecture has been divided in five separated
views, namely functional, node, development, deployment, and data, each of
them of utility for a particular group of stakeholders. It should be highlighted
that this document, as well as the outcomes presented as the project’s deliv-
erables and code, is a reference for building tactile IoT systems, and, thus, it
should be taken as such, rather than a platform ready to be deployed and used
without performing any tailoring to the targeted business scenario.

Acknowledgements

This work is part of the ASSIST-IoT project, which has received funding from
the European Union’s Horizon 2020 research and innovation program under
Grant Agreement No. 957258.

References

[1] I. Lacalle et al., “Tactile Internet in Internet of Things Ecosystems,” in
International Conference on Paradigms of Communication, Computing
and Data Sciences (PCCDS 2021), 2021, pp. 794–807.

[2] ISO/IEC/IEEE 42010, “ISO/IEC/IEEE 42010 - Systems and software
engineering - Architecture description,” 2011.

[3] N. Rozanski and E. Woods, Software Systems Architecture: Working
With Stakeholders Using Viewpoints and Perspectives. Addison Wesley,
2011.

[4] M. W. Maier, D. Emery, and R. Hilliard, “Software architecture: Intro-
ducing IEEE standard 1471,” Computer (Long. Beach. Calif)., vol. 34,
no. 4, pp. 107–109, 2001.

[5] M. Richards, Software Architecture Patterns. O’Reilly Media, 2015.
[6] CREATE-IoT Project, “D6.3. Assessment of convergence and interop-

erability in LSP platforms,” 2020.
[7] OpenFog Consortium, “OpenFog Reference Architecture for Fog Com-

puting,” 2017.
[8] AIOTI WG Standardisation, “High Level Architecture (HLA) Release

5.0,” 2020.



References 59

[9] P. B. Kruchten, “The 4+1 View Model of Architecture,” IEEE Softw.,
vol. 12, no. 6, pp. 42–50, 1995.

[10] ETSI, “GS NFV-MAN 001 Network Functions Virtualisation (NFV);
Management and Orchestration,” 2014.

[11] A. Fornes-Leal et al., “Evolution of MANO Towards the Cloud-Native
Paradigm for the Edge Computing,” in International conference on
Advanced Computing and Intelligent Technologies (ICACIT 2022),
2022, vol. 914, pp. 1–16.

[12] C. Lopez et al., “Reviewing SDN Adoption Strategies for Next Gen-
eration Internet of Things Networks,” in International Conference on
Smart Systems: Innovations in Computing (SSIC), 2021, vol. 235, pp.
619–631.

[13] O. López et al., “DevSecOps Methodology for NG-IoT Ecosystem
Development Lifecycle - ASSIST-IoT Perspective,” J. Comput. Sci.
Cybern., vol. 37, no. 3, pp. 321–337, 2021.

[14] The Kubernetes Authors, “Kubernetes documentation - Security.”
Online: https://kubernetes.io/docs/concepts/security/.

[15] IBM, “An architectural blueprint for autonomic computing,” 2005.
[16] C. I. Valero et al., “INTER-Framework: An Interoperability Frame-

work to Support IoT Platform Interoperability,” Interoperability of
Heterogeneous IoT Platforms. Springer, pp. 167–193, 2021.

[17] ASSIST-IoT Project, “D3.7 - ASSIST-IoT Architecture Definition –
Final,” 2022.

[18] NIST, “Internet of Things (IoT) Trust Concerns,” 2018.
[19] TIoTA Alliance, “Trusted IoT Alliance Reference Architecture,” 2019.




