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Abstract

Decentralization of the IoT ecosystems poses several challenges whenever AI
is applied in a shared fashion. Diverse locations, alongside privacy concerns,
require the use of holistic strategies, where various environments effectively
collaborate while avoiding data disclosure. In this context, this chapter pro-
poses a use case to demonstrate the appropriateness of the solution brought
by the ASSIST-IoT project. Specifically, multiple geographic and computing
locations, which are close to the automotive surface defects detection scan-
ners, work together to improve AI outcomes, scaling those to a large fleet of
vehicles.
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11.1 Introduction

The current transition from cloud-like centralized datacenters to more decen-
tralized systems, where geographically dispersed edge devices live, fosters
an unprecedented paradigm shift with disruptive effects in the convergence
between the physical and digital world. Here, orchestrating intelligence
(AI) promises to be a key driver for enabling low-latency applications
with high reliability in multitude of use cases (e.g., automotive, industrial
automation, personalized health, etc.). In addition, moving intelligence closer
to the edge, relaxing the dependence from a central location could con-
tribute to bandwidth savings, and energy-efficiency and help to preserve data
security/privacy [14].

The previous is aligned with reference to European entities in the field.
First, the European Strategy for Data includes at its heart the need for
decentralization to ensure flexibility and agility in matching demand/supply,
and responsiveness while reducing resource consumption through flexible
federation and a “fair business offer” [3]. Besides, according to the Alliance
for the Internet of Things Innovation (AIOTI) roadmap [7], the next release
(v6) of its high-level architecture will focus on artificial intelligence and
machine learning (AI) for the next-generation IoT systems (NG-IoT). The
success of using AI/ML to solve NG-IoT problems will highly depend on the
quality and quantity of available training data. However, while traditional ML
approaches typically rely on the central management of training data, such an
approach does not seem to be feasible or practical in the next era of IoT. The
reasons for this are, on the one hand, data privacy and regulatory compliance
and, on the other hand, technical burdens associated with the growing amount
of data to be collected and transferred to “a central location.” In this context,
decentralized AI solutions are needed.

11.1.1 Decentralized AI

The term distributed intelligence has at least two meanings: (a) collective
intelligence and (b) decentralized AI.

The main mechanisms of the collective intelligence are: (a) cognition
in terms of sensing, (b) cooperation as multiple (semi-) autonomous enti-
ties exchanging data to jointly establish what needs to be done, and (c)
coordination, conceptualized as a mechanism crucial for the realization of
workflows, where specific actions depend on the results of other actions. If
those mechanisms are understood in the most convenient way, it is not very
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difficult to envision scenarios, in which collective intelligence can be claimed
to materialize within NG-IoT ecosystems.

On the other hand, decentralized AI (sometimes also called distributed
AI) is a subfield of AI research, dedicated to the development of distributed
solutions for problems. It is often seen as a predecessor to the research
devoted to software agents and (multi-)agent systems. Still, within the scope
of this book, we referred this action to distributed problem solving. The main
idea is that, for example, completing the training of neural networks with
(very) large datasets would require on a single node a substantial amount
of time (hours, days, or even weeks) and resources, whereas if multiple
computing nodes are tightly coupled, the “training work” can be divided
among them, leading to more efficient use of resources in lower operational
time. In this way, distributed AI is somehow related to parallel computing.
Here, it is important to realize that the most common parallel computing
methods and approaches have been designed for a single stakeholder (i.e.,
a single user, or a company), being the sole owner of all of the data used for
model training. However, it has to be realized that, for the past few years,
the situation has been rapidly evolving. Among others, the following trends
brought about the changes:

• Proliferation of powerful handheld devices with multiple sensors, which
generate streams of data that users may want to control.

• Fast drop of price and size of sensors (and actuators), which can be
placed “everywhere” and can belong to “anybody.”

• Availability of small and inexpensive processors designed for machine
learning (e.g., NVIDIA Jetson Nano series devices), which can be placed
in almost any location within the IoT ecosystem.

• Increase in the number of wireless networks with high bandwidth and
range, which are used to establish communication channels between
sensors, actuators, edge devices, computing nodes, gateways, cloud(s),
etc.

• Progress in research, development, and deployment of the IoT ecosys-
tems, in almost all areas of day-to-day activities.

• Advances in methods, and their implementations, that can be used in
various ML scenarios.

As a result, the vision of a single owner of data, which is stored in a
centralized location and used to train model(s) to realize its own (individual)
goals, starts to be supplanted by approaches that can facilitate coopetition.
Here, coopetition is understood as a scenario where multiple entities (e.g.,
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data owners) compete in one context (e.g., as producers of medicines) and
cooperate in another, e.g., as providers of knowledge for the development of
shared machine learning models. Notably, this implies certain orchestration
and harmonization workload that must be performed among topologically–
and likely geographically– disperse devices, therefore becoming larger than
single-node parallelization.

11.1.2 Federated learning

Federated learning (FL) [10], [12] is one of the most recent developments
in the area of decentralized AI. FL is an approach to train AI/ML models
involving multiple datasets stored in “local nodes.” In other words, in FL, a
shared (global) model is trained collaboratively by multiple parties, which
protect their (private) training datasets. After each “round” of local training,
the model parameters are “combined into the central model.” After the update
is completed, the updated central model is redistributed and used either in
the training or in the inference processes. Typically, the updated version of
the global model is sent back to the nodes that participated in the training.
However, there exist FL scenarios, in which “new nodes” participate in each
training round (see, for instance, [11]). The training process is completed,
when the common model meets specific stopping criteria. Here, it should
be noted that while the typical training of a neural network is reported, FL
is model-independent; i.e., any model that can be trained on local data and
updated centrally can be used.

It should be noticed that the notion of parties participating in FL training
might refer to a wide spectrum of possibilities; starting from small edge
devices, cameras, or mobile phones, up to enterprise-scale data centers
located in different countries or even different companies and organizations.
With that scope in mind, ASSIST-IoT project [1] moves forward in this
decentralized AI direction, by providing an FL infrastructure to be used to
instantiate FL in future NG-IoT systems. This infrastructure is under con-
struction and is being deployed in a real-life industrial scenario. This chapter
presents the ASSIST-IoT FL system in detail, in the context of a specific use
case of the project focused on automotive sector. Here, the deployment will
realize an FL-based surface defect detection, applied without compromising
the data privacy of a large fleet of vehicles that pass through the scanners in
their individual locations.

The remainder of the chapter is organized as follows. Section 11.2 intro-
duces the different concepts of federated learning, while section 11.3 presents
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the adopted ASSIST-IoT FL architecture, detailing the different enablers
designed and implemented within the scope of the project. Next, Section 11.4
presents the specific case study and the current deployment situation. Finally,
conclusions are drawn in Section 11.5.

11.2 Federated Learning Principles

In order to successfully design the appropriate ASSIST-IoT FL system, the
project has followed the FL taxonomy identified in [9] that relies on five main
aspects:

• Communication architecture: While in a centralized design the param-
eter updates on the global model are always done in a central manager,
also called aggregator or collector, in a decentralized design, there is
not a single point of truth (there is no manager element). The most
commonly known example of a centralized FL architecture is the Google
Keyboard - Gboard for mobile keyboard predictions [8].

• Scale of federation: The FL systems can be categorized into two typical
types by the scale of federation: cross-silo and cross-device. The differ-
ences between them lie in the number of parties and the amount of data
stored in each party. In cross-silo, the parties can be either independent
organizations or independent data centers of a single organization. In
cross-device, on the contrary, the number of parties is relatively large and
each party has a relatively small amount of data as well as computational
power, the parties usually being IoT devices.

• Data partitioning: FL systems are also categorized in horizontal or
vertical data partitioning based on how data are distributed over the
sample and feature spaces. In horizontal data partitioning, the datasets
of different parties have the same feature space but little intersection on
the sample space, so that the parties can train the local models using their
local data with the same model architecture. In vertical FL, the datasets
of different parties have the same sample space but differ in the feature
space.

• ML model: Since FL is used to solve ML problems, the parties usually
want to train state-of-the-art ML models. The most popular ML models
are neural networks (NN), which achieve state-of-the-art results in many
AI tasks, like image classification and word prediction; decision trees,
which are highly efficient to train and easy to interpret compared with
NNs; and linear models (e.g., linear regression, logistic regression, and
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Figure 11.1 ASSIST-IoT FL system formed by four enablers.

support vector machines), which are well-known and easy-to-use ML
models.

• Privacy mechanism: Although, ideally, local data is not expected to be
exposed in FL, the exchanged model parameters may still leak sensitive
information about the data. The most well-known privacy mechanisms
include cryptographic methods or differential privacy.

11.3 Federated Learning System of ASSIST-IoT Project

According to the previously described categorization, and feature implemen-
tation options, the proposed ASSIST-IoT FL system for the automotive pilot
uses the following configuration:

• Communication architecture: Centralized
• Scale of federation: Cross-device
• Data partitioning: Horizontal
• ML model: Neural Network
• Privacy mechanism: Differential privacy

The proposed ASSIST-IoT FL system block diagram and flow chart are
shown in Figure 11.1. As it can be seen, four main functional blocks can
be distinguished. These functional blocks are named enablers and are used
as an abstraction term in the project acting as the cornerstone elements
of the ASSIST-IoT architecture. In essence, an enabler is a collection of
software components – running on nodes – that work together to deliver a
specific functionality of a system, that is, ASSIST-IoT enablers are not atomic
but presented as a set of interconnected components. It should be noticed
that multiple enablers may be used in a system to deliver a more complex
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service, leveraging features of the involved enablers. Additionally, one of the
most important design principles that distinguish components from enablers
is that the components from different enablers cannot directly communi-
cate unless a RESTful API endpoint has been explicitly developed for that
purpose.

Regarding the regular call flow in this particular deployment, it starts with
the model training. To do so, a proper training job configuration is submitted
to FL orchestrator that propagates it to FL training collector and candidate FL
local operations to execute the job. Then, FL training collector collaborates
with FL local operations to finally obtain new global model aggregated from
successive local updates. To support the process, FL repository is used to
store all required intermediate and final information and metadata. After
successfully finalizing the training job, the new global model can be used
for local inference by FL local operations.

The following sections describe the four ASSIST-IoT FL enablers in
detail [13].

11.3.1 FL enablers

11.3.1.1 FL Orchestrator
FL orchestrator is the enabler responsible for specifying and managing FL
workflow(s)/pipeline(s), including:

• FL job scheduling;
• Management of the FL lifecycle;
• Selection and delivery of initial version(s) of the shared model;
• Delivery of the version(s) of models used in various stages of the

process, such as training stopping criteria;
• Handling the different “error conditions” that may occur during the FL

process.

It is formed by two components:

• FLS API server: Offers a REST API to allow for the communication
and interaction with the other enablers of the FL system. Although
the communication of model updates and configuration between the
FL training collector is carried out via gRPC, all traffic between the
FL orchestrator or the FL repository and the rest of the enablers is
exchanged using a RESTful API. Hence, it allows to retrieve information
or perform FL management actions, to FL local operations, FL training
collector, and FL repository.
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• FLS workflow manager: This component is in charge of defining the
workflow for a specific instance of the FL lifecycle. Workflow descrip-
tion specifies, among others, the source of initial configuration (e.g.,
minimum number of FL local operations needed for federated training,
number of training rounds for carrying out the federated learning pro-
cess, the initial shared ML model to be used, evaluation criteria method
and required accuracy value, method used for parameter aggregation,
and required encryption mechanisms), and lifecycle management (e.g.,
evaluating the number of FL local operations connected, or the number
of training rounds finished provided by the FL training collector).

11.3.1.2 FL Repository
The FL repository is used to store all information necessary to conduct
the FL process (configuration, models, algorithms, etc.). It consists of two
components, one holding the FastAPI, server which is in constant contact
with the second component that encapsulates the MongoDB database.

This database is used to store initial ML models, already trained ML
parameters suitable for specific datasets and formats, multiple averaging
approaches, as well as additional functionalities that may later be needed,
including data transformations and IP addresses of potential client instances
present in the FL system of ASSIST-IoT. ML model weights are kept in the
form of GridFS chunks in order to allow them to exceed the size of 16 MB
(which they sometimes do).

The FastAPI server serves just as a gatekeeper to the MongoDB instance,
allowing for the easy performance of specific queries (and only performing
those queries).

11.3.1.3 FL Training Collector
The FL training process involves several independent parties that commonly
collaborate in order to provide an enhanced ML model. In this process, the
different local update suggestions shall be aggregated accordingly. This duty
within ASSIST-IoT is tackled by the FL training collector, which resides in
a centralized location and is also in charge of delivering back the updated
model. Therefore, its functionalities are:

• Aggregation of local updates of the ML model prepared by independent
parties as a part of a model enhancement process by means of the
specialized FL averaging mechanisms and FL training collector I/O
components.
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• Supplying specific FL local operations with any additional configuration
they might need by communicating via gRPC.

• Configuration of the employment of privacy mechanisms on edge (in
the case of differential privacy) or just aggregating the weights in a
manner compliant with those mechanisms (in the case of homomorphic
encryption).

• Delivering back to the parties the updated model using the established
gRPC connection, synchronizing the training, and later obtaining the
results of local training.

• In some cases, the FL training collector may also conduct performance
evaluation on the global model throughout training. For this purpose,
it will also use the data transformation module (in order to pre-process
the test data before the evaluation). More information about the data
transformation module will be presented in a later section.

11.3.1.4 FL Local Operations
The FL local operations is the enabler embedded in each involved party
performing local training. Its components and their respective functionalities
are:

• Data transformer is used for the verification of local data format
compatibility with the data formats required by the models being trained,
as well as for application of the required data transformations using
predefined transformers if needed. For more details about the data
transformation module, please refer to the next section.

• Local model trainer is in charge of getting the local results that are later
on passed to the FL training collector to carry out the proper aggregation
method over the common shared model.

• Local model inferencer, as its name suggests, carries out the inference
process of the final shared ML model over new incoming data.

• Privacy. There are two privacy mechanisms available out of the box
provided by ASSIST-IoT enablers: differential privacy with adaptive
clipping and homomorphic encryption. The differential privacy mech-
anism was based on [5] and [6]. Here, the influence of the model update
supplied by a given client is not clipped according to a fixed clipping
threshold but adaptively modified throughout training. Although the
Gaussian noise and clipping is applied on the side of FL local operations,
FL training collector is responsible for most of the metric computation
needed to adjust the clipping. Homomorphic encryption, on the other
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hand, requires a significant additional computation on the side of FL
local operations, with only small adjustments needed on the side of the
FL training collector. Therefore, the computational and communications
overhead introduced by the homomorphic encryption currently prohibits
its use beyond the training of very simple models using a specially
adapted version of the federated averaging strategy.

• Local communication is the RESTful API that acts as the entrance and
exit gate of the FL local operations with the rest of the enablers of the FL
system. The FL local operations can also additionally establish a gRPC
connection with the FL training collector.

11.3.2 Secure reputation mechanism for the FL system via
blockchain and distributed ledger

In addition to the baseline FL features, an external distributed ledger enabler
will be included in the next iteration of the pilot. It would provide a secure
reputation mechanism for all the local operators. The reputation mechanism
therefore will constitute a safe guard mechanism that prevents free-riders
from freely accessing the global model without contributing to it and also
malicious adversaries from poisoning the global model [17]. To do so,
blockchain technology has been proposed. This technology allows the secure
maintenance of a distributed ledger among several parties without the need of
a trusted centralized authority using a consensus algorithm. Blockchain tech-
nologies depending on whether we refer to permissionless or permissioned
blockchain networks can ensure different security aspects. For permission-
less blockchain networks, transparency, decentralization, immutability, and
traceability of shared data can be ensured, while permissioned networks can
ensure private transactions by granting access to the data of the distributed
ledger only to authorized users who have the right permissions [2], [15], [16].

The integration of the DLT enabler with the FL baseline system is
illustrated in Figure 11.2. The DLT enabler will calculate reputation scores
for each FL local operator instance, which will be stored on a permissioned
blockchain network that allows only authorized users to have access to the
scores and also to participate in the consensus algorithm that updates them.
This consequently will increase the privacy of the reputation score data. Next,
FL training collector will send the weights from the FL local operations and
the weights from the global model to the distributed ledger (DLT).

The final reputation score for each FL local operations will be calculated
using the cosine similarity between the weights of FL local operations and
the aggregated weight [17]. The final reputation score for each local operator
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Figure 11.2 ASSIST-IoT FL-DLT enabler.

will be stored in the DLT along with the reputation set that contains the FL
local operations who would be considered reputable in this round (if their
calculated score is not below a given threshold). The FL training collector
will query on an on–off strategy to the reputation scores and reputation set, so
that further decisions on the penalties or incentives for the FL local operations
may be taken.

In detail, the FL-DLT enabler depicted in Figure 11.2 is composed of
three components:

• Distributed ledger (DLT) communicator: This component is a REST-
ful API that receives weights from the training collector, and it also
fetches from the DLT storage and sends back to the training collector
the reputation scores and reputation set.

• Reputation score calculator: This component applies the reputation
mechanism and calculates the scores for each local operator in each
training round. It also maintains a reputation set containing all the
reputable local operators.

• Distributed ledger (DLT) storage: This component stores the reputa-
tion scores and the reputation set to the distributed ledger.

11.4 ASSIST-IoT FL Application in an Automotive Defect
Detection Use Case

11.4.1 Business overview and context of the scenario

During the last years, the digitalization pressure and optimization needs
are deeply studied in the automotive field. AI-based surface inspection of
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the vehicle exterior is seen as a well-promised common case of the previ-
ous one, where precisely FL can hold a primary role. For instance, in the
proposed validation scenario, where images are taken by cameras in arch
scanners that are installed in various locations and potentially in garages
owned by different entities. First, it relaxes the need of sharing data (pri-
vacy and aversion concerns). Second, it reduces the dependency on network
connection vís-a-vis a centralized, cloud approach of data gathering and AI
application. Third, it moves the focus to the work close to the action (where
scanners are), in terms of end-user interaction. This is relevant as this inter-
action actually inserts labeled training and validation data; thus, efficiency is
improved.

In the proposed case, the goal is for a FL-powered deep learning system to
relax the bandwidth usage and the overall network dependency and to provide
faster and more accurate detection of defects (currently up to 15 minutes). The
FL solution will need to deal with cameras that capture data and metadata of
50–300 colored, high-resolution images per vehicle analyzed (Figure 11.3).
Then the system mounted forward data via fiber optics, 4G, and 5G to a
cloud location. Edge locations (where scanners reside) are equipped with
an intelligent storage system with local buffering (but have limited storage
capacity) and provide a direct connection to end users that annotate human-
visualized defects. There, the associated front-end software must handle a
hundred thousand images, offering advanced, application-centered visualiza-
tion, and display with an optional focus on existing damages and AI proposal.
It must be considered that the data can be very heterogeneous due to different
models, locations, scanner owner, and indoor/outdoor position, among others.
Therefore, the AI-based inspection can strongly support both manual users
reviewing or automated inspection and evaluation procedures to monitor and
determine the vehicle’s exterior conditions. Due to the nature of the task, the
consideration of the images of many scanners for the AI-model training has
large impact on the overall quality of the global AI models in the current
cloud approach

From the federated learning point of view, the task setup may look as
follows (Figure 11.3). Either scanners or individual cameras can operate
as federated clients, performing both model training and inference tasks,
with the central server being responsible for coordinating the processes, like
training, testing, aggregating, and distributing the latest version of the global
model.



11.4 ASSIST-IoT FL Application in an Automotive Defect Detection Use Case 2439.4 ASSIST-IoT FL application in an automotive defect detection use case 13

(a) Scanner gate (b) Scanner structure

Figure 9.3: Car damage recognition – scanner gate

central server being responsible for coordinating the processes, like training,
testing, aggregating, and distributing the latest version of the global model.

9.4.2 Proposed solution and benefits of decentralized learning strategy

The application of AI and specifically FL to the automotive use case enables
to optimize the process of damage recognition with respect to current situa-
tion. Firstly, application of AI and inference close to the sources of the data
will enable faster processing of the data and recognition of situations that
need special handling. Secondly, the benefits coming with using FL-based
approach can be identified compared to the centralized approach. The cen-
tralized approach is an alternative in which all data collected on local devices
(e.g. scanner cameras) is sent to the server (cloud) and processed there to train
the model or inference on the using the trained model. Therefore, FL allows
the described use case to benefit from:

• Significantly reduced or practically non-existing necessity to transfer
privacy-sensitive data. As a result, the whole dataset is never stored in a
centralized manner, but local datasets are available on client nodes and
used there to train the local versions of the model. This increases overall
data privacy which is important when considering multi-stakeholder en-
vironment with coopetition. This is relevant for the selected application
case due to the aforementioned aversion and privacy concern existing
while scanners are owned by multiple entites (and even in single scenar-
ios). Cameras are subject to confidentiality rules, as they may contain

Figure 11.3 Car damage recognition - scanner gate.

11.4.2 Proposed solution and benefits of decentralized learning
strategy

The application of AI and specifically FL to the automotive use case enables
to optimize the process of damage recognition with respect to current situa-
tion. First, application of AI and inference close to the sources of the data will
enable faster processing of the data and recognition of situations that need
special handling. Second, the benefits coming with using FL-based approach
can be identified compared to the centralized approach. The centralized
approach is an alternative in which all data collected on local devices (e.g.,
scanner cameras) is sent to the server (cloud) and processed there to train
the model or inference on using the trained model. Therefore, FL allows the
described use case to benefit from the following:

• Significantly reduced or practically non-existing necessity to transfer
privacy-sensitive data. As a result, the whole dataset is never stored in a
centralized manner, but local datasets are available on client nodes and
used there to train the local versions of the model. This increases overall
data privacy which is important when considering multi-stakeholder
environment with coopetition. This is relevant for the selected appli-
cation case due to the aforementioned aversion and privacy concern
existing while scanners are owned by multiple entities (and even in
single scenarios). Cameras are subject to confidentiality rules, as they
may contain private information of both the vehicle owner and the
company that performs the damage inspection.

• Decreased need for data storage capacities on the server side and
reduced data transfer between local devices and server (cloud). This is
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specifically important in big data environments. This would help entities
using the scanner-based installation to be more efficient and accurate on
their predictions, as the need of communication toward cloud would be
relaxed and the annotation by company stuff would leverage (limited)
edge storage capacities instead of submitting upwards.

• Improved inference speed, as the location of the global model on the
local nodes implies that no communication between the source of the
data and the server (cloud) for generating predictions is intended and
all the inference happens close to the device that generated the data.
As indicated in the business case description, this is the main goal of
the application of FL system, aiming to reduce the (up to) 15 minutes
current timeframe for predictions.

• Personalization availability. Due to the previously described reasons
for local data heterogeneity, federated clients may require additional
uptraining on their local data for better model performance, and FL
provides an easy way to produce a more personalized tool for vehicle
damage detection that takes into consideration features of the local
dataset, while still benefiting from the generalized knowledge from the
multiple entities that participated in the joint training.

• Global model aggregation techniques can be used to mitigate the effect
of the heterogeneity of damage and vehicle types present on the client
nodes. Here, allowing local training of models, which can grasp more
nuances related to usual vehicles in a specific location (e.g., vans), would
enhance the depth of knowledge that can be applied to other sites with
less volume of such. Therefore, FL system is capable of adapting to
task-specific challenges and site-specific data.

Figure 11.4 shows how enablers proposed in the ASSIST-IoT FL architec-
ture can be combined in the system deployed for automotive defect detection
use case. Here, the FL local operations run on clients (cameras), whereas
FL orchestrator, FL training collector, and FL repository are located in the
cloud. The main goal is to distribute the processing, instead of sending all the
images to the cloud and processing it centrally. Here, although the centralized
topology seems to be a good choice for initial implementation, it can be
foreseen that a more complex topology (e.g., hierarchical) may be ultimately
needed [4]. One of the reasons is that in an extended deployment, groups of
scanners may belong to different stakeholders that all want to benefit from
the good detection model but without disclosing their data.
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Figure 11.4 FL architecture for the automotive defect detection use case.

Note that, on the diagram, besides aforementioned FL enablers, additional
enablers designed and implemented within ASSIST-IoT are included address-
ing: cybersecurity (specifically authentication and authorization), long-term
storage (the long-term storage enabler can provide local storage of images
for FL clients), and tactile dashboard (for visualizations needed in the sys-
tem). Upon reflection, it is easy to see that these elements can provide all
additional functions needed in the considered ecosystem.

11.4.3 Proposed validation

Federated learning experiments for the car damage detection use case were
performed based on the mask-RCNN model for object detection and seg-
mentation. During the federated training, separate cameras were treated as
federated clients. Initial experiments were performed with a total of eight
cameras, although in the future scenarios, more populated experiments are
expected.

The evaluation of the FL model is based on the holdout evaluation dataset,
which consists of images, representing a comprehensive set of possible infer-
ence scenarios. This dataset also includes images with no detected damages
at all, in order to properly test the model’s capability to accurately detect both
damages and their absence. An example of the damage detected by the model
is shown in Figure 11.5.
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Figure 11.5 Rim damage detection example (target – left; result – right).

The metrics taken into account are appropriate for the task of object
detection and segmentation. The main performance indicators, therefore, are
precision, recall, and the resulting F1 score per damage category with the IoU
(intersection over union) threshold set at a reasonable value. For the deployed
model, the appropriate IoU is expected to be around 0.5.

Apart from the calculated performance indicator, an expert-based evalua-
tion is also implied. As the system is expected to assist human professionals
during their damage evaluation activities, their feedback will provide the
necessary information for further model improvements.

Finally, for the evaluation of the use case, the following KPIs have been
identified and will be controlled and verified: (i) increase of detected defects
on the car exterior, (ii) faster vehicle inspection compared to the current
process (planned at least 30% increase), and (iii) minimization of data transfer
(planned at least 50% increase).

11.5 Conclusions

Decentralized AI promises to be a relevant innovation to be incorporated
to Next-Generation IoT deployments. From the viewpoint of decentralized
intelligence, ASSIST-IoT has focused on Federated Learning. This technique
relies on training machine learning models in coopetition manner –a joint
cooperation and competition approach– over heterogeneous nodes located
at different locations and with different computing capabilities. For doing
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so, strategies to locally train the models, centrally orchestrate the averaged
updates, and a way to bring back the trained model for either further training
or infererence to those edge devices is needed. Rooting on relevant references
and based on the novel architecture provided by the project, an FL system has
been designed and it is being developed.

One of the many applications that such a system could have is material-
ized in a real-life use case brought by ASSIST-IoT, consisting of leveraging
edge computing in various locations to train ML algorithms that detect defects
on vehicles’ surfaces. The usage of ASSIST-IoT’s FL system allows to
improve inference speed as well as reduce the network bandwidth needs to
the cloud, while keeping the data in the local environments, thus increasing
security and privacy. The use case is currently being trialed and some early
evaluation activities are providing optimistic outlooks. Final results of the
experiment will be presented in future works.
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