
10
Methods for Requirements Engineering,

Verification, Security, Safety, and
Robustness in AIoT Systems

Marcelo Pasin1, Jämes Ménétrey1, Pascal Felber1, Valerio Schiavoni1,
Hans-Martin Heyn2, Eric Knauss2, Anum Khurshid3, and Shahid Raza3

1University of Neuchâtel, Switzerland
2Gothenburg University, Sweden
3Research Institutes of Sweden AB, Sweden
E-mail: marcelo.pasin@unine.ch; james.menetrey@unine.ch;
pascal.felber@unine.ch; valerio.schiavoni@unine.ch;
hans-martin.heyn@gu.se; eric.knauss@cse.gu.se; anum.khurshid@ri.se;
shahid.raza@ri.se

Abstract

This chapter presents methods for requirements engineering, verification,
security, safety, and robustness with a special focus on AIoT systems. It
covers an architectural framework dealing with requirements engineering
aspects of distributed AIoT systems, covering several clusters of concern
dealing with the context description of the system, learning environment of
the deep-learning components, communication concerns, and a set of quality
concerns, such as ethical aspects, safety, power, security, and privacy aspects.
Each cluster contains a set of architectural views sorted into different levels
of abstraction. In addition, it introduces WebAssembly as an interoperable
environment that would run seamlessly across hardware devices and software
stacks while achieving good performance and a high level of security as a
critical requirement when processing data off-premises. To address security
aspects in AIoT systems, remote attestation and certification mechanisms are

197

198 Methods for Requirements Engineering, Verification, Security, Safety

introduced to provide a TOCTOU (time-of-check to time-of-use) secure way
of ensuring the system’s integrity.

Keywords: IoT, machine learning, AIoT, requirements engineering, TOC-
TOU, WebAssembly, verification, security, safety, robustness.

10.1 Introduction

More and more traditional algorithms are replaced by models based on deep
learning. Deep learning has proven to be successful in solving problems of
large complexity, such as natural language processing or facial recognition
tasks. In addition, systems tend to be broken down into different compo-
nents, to be placed where they are most needed and can be most efficient.
By establishing high-bandwidth connections between all kinds of different
devices and allowing many different system configurations, the components
of the distributed system become part of what is known as the Internet of
Things (IoT). When combining deep learning with the properties of IoT, new
concerns might arise that are not yet foreseen by standards and literature. The
new concerns include aspects such as data quality, heuristic deep-learning
modeling, learning of the models, or even new ethical considerations.

Applying disruptive systems and methods in real-world applications
relies on advances in development methodology. New methods for effectively
describing requirements for AI-based algorithms that are distributed over IoT
devices from edge to the cloud and how they relate to end-user concerns and
needs are a crucial part of the solution. These methods build the foundation
for specifying components of such systems in a way that enables to reason
about robustness and safety as well as to enable security, privacy, and trust by
design. AIoT systems contain both traditional software and hardware compo-
nents and AI components running on specialized AI acceleration hardware.
The challenge is not only to specify and design the AI components but also
to integrate them together with the traditional components into an overall
AI-enabled system.

10.2 Architecture Framework for AIoT Systems

Architecture frameworks (AF) provide a reusable knowledge structure for
designing an AIoT system. An AF organizes architectural descriptions into
different architectural views [6]. Different architectural views allow for
decomposing the design task into smaller and specialized subtasks, each task
specifically suitable to serve a certain design aspect of the system.

10.2 Architecture Framework for AIoT Systems 199

10.2.1 State-of-the-art for AI systems architecture

In a research agenda for engineering AI systems, the authors provide a list of
challenges when developing architectures for systems with AI components
[7]: Providing the right (quality of) data used for training, establishing the
right learning infrastructure, building a sufficient storage and computing
infrastructure and creating a suitable deployment infrastructure. The latter
includes monitoring the behavior of the AI systems under operation because
it might only be possible to detect and correct flaws in an AI system after
deployment. Furthermore, AI systems do not only consist of AI components
but also rely also on conventional software and hardware components. The
development of AI components and traditional system components must
therefore be aligned to avoid unwanted technical debt [11]. However, as
Woods emphasizes, traditional architecture frameworks, such as the 4+1
architectural view model by Kruchten [9], do not account for data and
algorithm concerns connected to AI component development [10]. Generally,
new stakeholders (e.g., data engineers, or governmental agencies overseeing
the use of AI in society), and new concerns connected to AI like data
quality aspects, ethical considerations such as fairness or explainability, and
eventually many more, need to be represented through new architectural
viewpoints. An example of such an additional viewpoint is a learning view-
point governing the view on the machine learning flow [12]. Developing AI
components is a hierarchical, yet also iterative task: Prepare training data and
environment, create a suitable model, train and evaluate the model, tune, and
repeat training, and eventually deploy and monitor the runtime behavior of
the trained model [7, 13]. To fulfill a stakeholder’s goal with a system, its
design needs to be decomposed into different levels of system design, and
consistency needs to be ensured to satisfy high-level requirements [14]. In
addition, the system design must also allow for middle-out development,
where existing components need to be integrated into the overall system
design (e.g., transfer-learning from existing AI models or integration of off-
the-shelf components). Murugesan et al. propose a hierarchical reference
model which supports the appropriate decomposition of requirements to the
composition of the system’s components [15]. In their model, they define how
components can be decomposed into subcomponents. To ensure consistency
between the system architecture and the requirements, they define the terms
consistency, satisfaction, and acceptability. One major advantage of their
model is that, if the decomposition of system components is done correctly,
these components can be independently specified and developed.

200 Methods for Requirements Engineering, Verification, Security, Safety

In summary, a major challenge in AI system design is the lack of design
patterns, standards, and reference architectures that support the co-design of
traditional software components and AI components [16]. When designing
a system, a range of quality aspects, such as safety, security, and privacy
needs to be considered. For AI systems, ethical aspects such as explainability
of decisions, fairness, and participation play an important role during the
system design process. Therefore, the architectural framework for AIoT shall
not only support the seamless design and integration of traditional software
components and AI components but also allow for all necessary quality
concerns to be considered as early as possible in the design process.

10.2.2 A compositional architecture framework for AIoT

The main goal is to introduce an architecture framework based on compo-
sitional thinking suitable for developing distributed AI-based systems. The
idea of an architectural framework is to provide a knowledge structure that
allows the division of an architectural description into different architectural
views [6]. An architectural view expresses “the architecture of a system
from the perspective of specific system concern” [17]. The conventions of
how an architectural view is constructed and interpreted are given through a
corresponding architectural viewpoint. Several views on the architecture of
the system-of-interest allow for factoring the design task into smaller and
specialized tasks.

For a given concern, there exist several views at different levels of
abstraction. A hierarchical design process allows for the co-evolution of
requirements and architecture, known as the “twin peaks of requirements
and architecture” [19, 20]. Based on ideas from compositional thinking, an
evolution of system architectures seems possible by establishing suitable
descriptions of the abstraction levels for the architectural views, their classifi-
cation into clusters of concern, and the relation between the views. We call the
framework “compositional” because it is built up from different “modules,”
called clusters of concern, at different levels of abstraction [18].

10.2.3 Clusters of concern

Clusters of concerns are determined through the identified use cases based on
the operational context and high-level goals for the desired AI system. For
example, privacy might not be of concern for an AI-based diagnostic system
detecting faults of a welding robot, but safety could be of paramount concern.
Four major groups of concerns emerged for the architecture framework:

10.2 Architecture Framework for AIoT Systems 201

Behavior and context contains aspects that concern the static and
dynamic behavior of the system, as well as the context and constraints for the
desired behavior. To describe an architecture reflecting the desired behavior
of the system, two clusters of concern are introduced: Logical Behavior
covers views that are concerned with the static behavior of the system, and
Process Behavior covers views concerned with the dynamic behavior of the
system. The Context and Constraints cluster of concern covers views on the
system that define the context and limits the design domain for AI systems.
For AI systems, it is beneficial, sometimes even required, to explicitly state
the desired context and to define views on the constraints and the design
domain of the system. An example is the Operational Design Domain of
automated vehicles.

Means and resources contains aspects of the system that enable the
desired behavior. The concerns in this group include views that allow to the
description of the resources and means available for the system to execute the
desired behavior in a given context.

Typical views include the hardware architecture and component design of
the system under the cluster of concerned hardware. Additionally, three AI-
related clusters of concern have been identified that are fundamental “means
to execute a desired behavior.”

First, the concerned AI models contain views that describe the setup and
configuration of the required AI model, including the choice of the right
deep-learning model. For example, the classification of objects in an optical
video stream requires a different deep neural network configuration and then
recognizing commands in a voice recording or predicting trajectories of other
vehicles in the vicinity. Choosing the right AI model setup is a system design
decision which requires suitable views on the AI model in relation to the
overall system.

Furthermore, the learning strategy of the AI model has a paramount
impact on the final behavior of the AI system. The learning cluster of concern
covers views on the system that allows for defining and setting up the learning
environment of the AI model. This can include the definition of training
objectives and views that outline the chosen optimizer for training. Planning
and preparing the learning of the AI model therefore becomes a “mean to
execute a desired behavior” within an AI system. Learning can be conducted
through preparing training datasets, or, in the case of reinforcement learning,
could be done in a simulated environment.

202 Methods for Requirements Engineering, Verification, Security, Safety

Data strategy contains views that support collection and selection for
training, validation, and runtime data of the AI model. Views can describe
methods for data creation, data selection, data preparations, and runtime
monitors of data used by the AI. Trained with the flawed datasets (e.g.,
bias present in the data), the behavior of the AI system will exhibit the
flaws learned during the learning process (e.g., it will show a bias in the
decisions). The concerns of an AI model, Learning, and Data Strategy
have many dependencies on each other, which will be expressed through
correspondence.

Communication deals with aspects of data, connectivity, and commu-
nication between nodes or components of the desired system, which is one
major concern when developing distributed systems, such as automotive
systems, or systems in the IoT. Communication is what drives the IoT. Two
clusters of concerns have been identified: First, Information accumulates
views on the system that model the information and data exchanged in and
through the system-of-interest. Second, the cluster of concern Connectivity
contains views on the means of communication available to the system and
its resources.

Quality concerns basically encompasses all quality aspects described
through quality attributes, which can affect the architecture of the system.
Examples are safety, security, privacy, robustness, and ethical concerns. The
latter can include aspects such as fairness and explainability. Recent legisla-
tion shows that ethical aspects become a central concern when developing
AI systems [21]. This group contains concerns that influence the desired
quality of the system. The cluster of concern safety provides an example here:
Assume one is to follow the workflow of ISO 26262 [21]. The starting point
to designing a safe system is to identify safety goals that the architecture, as
part of the functionality-providing item, needs to fulfill. This is often done
through a Hazard Identification and Risk Assessment (HARA), which pro-
vides abstract information applicable to the entire system. On the next lower
level of abstraction, the functional safety concept provides a view of a more
detailed system architecture that introduces functional safety requirements
and redundancies (through safety decomposition in hardware and software
components) with the aim to assure the fulfillment of the earlier specified
safety goals. On the next more detailed level, the technical safety concept
provides information on the technical realization of the functional safety
concept. In addition, and not explicitly mentioned in ISO 26262, we propose
that the runtime behavior and monitoring is part of the system design process.

10.2 Architecture Framework for AIoT Systems 203

For safety concerns, this could mean the introduction of safety degradation
concepts and safety monitoring. Further identified relevant clusters of con-
cerns for quality aspects of an AI system in the IoT are Security, Privacy, and
ethical aspects such as Fairness and Transparency. For embedded systems,
Energy Efficiency can be taken up as an explicit quality aspect covered by
a separate cluster of concerns. Unlike previous architectural frameworks for
the IoT, the compositional thinking in the architectural framework allows for
co-designing the system to fulfill the explicitly identified quality concerns.
It means that already early in the system development, correspondences
between the views regarding the quality concerns and other views in the
architecture description are established. The final system can then be said
to be “Safe by design,” “Secure by design,” “Efficient by design,” or “Fair by
design.”

Table 10.1 provides a list of viewpoints, which govern architectural views
in the architecture framework, that we assume to be novel and relevant
specifically toward the AI components of the system.

10.2.4 Levels of abstraction

The architectural views are not only sorted by clusters of concerns as dis-
cussed previously but also by their represented level of abstraction. We found
it most beneficial to follow four levels of abstraction, specifically knowledge
and analytical level, conceptual level, design level, and runtime level:

Knowledge and analytical level: The first level of abstraction includes
architectural views that provide an abstract and high-level view of the system-
of-interest. On that level, all views provide a way to describe the system
and context on a knowledge level, which provides information for further,
more concrete system development. For example, the high-level AI model
view could elaborate on which functions should be fulfilled through an
AI.

Conceptual level: On the next level of abstraction, the views provide a
more concrete description of the overall system-of-interest. Components are
not detailed yet, but the overall system composition becomes clear and the
context of operation is clearly defined. For example, the AI model could
be concretely shaped as a deep-learning network with a required amount
of layers. All views on this level combined provide a system specification
that sets the system-of-interest in context and elaborates on how the desired
functionality is fulfilled.

204 Methods for Requirements Engineering, Verification, Security, Safety

Table 10.1 Description of clusters of concern in the framework.
Concern Description
Behavior and Context Aspects that concern the static and dynamic

behavior of the system, as well as the context and con-
straints for the desired behavior.

Logical Behavior Views that are concerned with the static behavior of the
system.

Process Behavior Views concerned with the dynamic behavior of the system.
Context and Constraints Contains views on the system that define the context and

limit the design domain.
Means and Resource Contains views on aspects of the system that enable the

desired behavior.
Hardware Includes views on the hardware architecture and component

design of the system.
AI models Contains views that describe the setup and configuration of

the required AI model. Views can include model design,
for example, neural network setup or views detailing the
configuration of the AI model.

Data strategy Views that support collection and selection for training, vali-
dation, and runtime data of the AI model. Views can describe
methods for data creation, data selection, data preparations,
and runtime monitors of data used by the AI.

Learning Covers views on the system that allows for defining and
setting up the learning environment of the AI model. This
can include the definition of training objectives and views
that outline the chosen optimizer for training.

Communication Contains views of data, connectivity, and communication
between nodes or components of the desired system.

Information Accumulates views on the system that model the information
and data exchanged in and through the system-of-interest.

Connectivity Contains views on the means of communication available to
the system and its resources.

Quality Concerns Encompass quality aspects which can be described through
non-functional requirements which affect the architecture
of the system.

Ethics Views that regulate ethical aspects, such as fairness or
transparency of the system.

Security Views that ensure the security aspects of the system.
Safety Contains views governing the safety aspects of the system.

The views can stem from standards such as ISO 26262.
Energy Efficiency This cluster of concerns contains views ensuring energy

efficiency, especially for mobile devices.
Privacy Here, views can be contained that ensure privacy require-

ments, such as for example requested by regulatory authori-
ties.

10.2 Architecture Framework for AIoT Systems 205

Design level: The most concrete level at the design time of the system
is the design level, which includes views that concretely shape the final
system-of-interest. Resources are allocated to components, the AI model is
configured to work most efficiently in the given environment, and the con-
crete component hardware architecture is defined. The solution specification
describes the final embodiment of the system-of-interest.

Runtime level: Complex systems, both AI-driven and conventional, often
require forms of monitoring and operations control. The purpose of runtime
monitoring can be manifold: On one hand, monitoring a deployed system at
a run time provides valuable feedback about its performance and reliability
to developers and product owners. DevOps is an essential component of an
agile development framework, and early detection of issues in a deployed
system allows for a swift response from the developers. Furthermore, some
requirements of the system might not be exhaustively testable before the
deployment of the final system. This is especially the case for AI systems
because we have to anticipate undesired behaviors of deployed AI algo-
rithms. By constantly monitoring the decisions of the AI algorithm, such
deviations from the intended behavior can be detected and mitigated, for
example, through retraining or by “pulling the plug.” Most AI systems are
not “adaptive.” They are trained and tested with a dataset representing the
desired context in which the AI system is intended to operate in under the
assumption of stationarity in the probability distribution of the data. In reality,
the assumption of stationarity of the probability distributions does not hold
in most cases, for example when the context, in which the AI operates, can
change over time. Concepts like continual learning allow the AI to handle
drifts in data distributions. However, continual learning requires runtime
monitoring concepts to detect deviations from the currently learned context,
and automatic data collection (and labeling) for autonomous retraining of
the AI model. These aspects of changes in runtime behavior are described
on the runtime level of abstraction in the compositional architectural
framework.

The final conceptual model of a compositional architecture framework
based on the stated propositions is illustrated in Figure 10.1.

10.2.5 Compositional architecture framework

Figure 10.2 presents a compositional architectural framework that includes
all earlier identified concerns for distributed AI systems and all levels of
abstractions for AIoT systems [18].

206 Methods for Requirements Engineering, Verification, Security, Safety

Group of
concerns

Cluster of
concern

Architecture
view

Architecture
viewpoint

Business Goal
or Use Case

Stakeholder

Relation /
Correspon-

dence

Level of
Abstraction

System-
of-interest

1..*

1..*

1..*

1..*

has

1..*

exists on

describes /
specifies

determine

addresses

governs

1..*

Figure 10.1 Conceptual model of a compositional architecture framework [18].

HardwareContext &
Constraints

Data
Strategy

LearningLogical
Behaviour

Process
Behaviour

Function
com-

ponents

A
na

ly
tic

al
Le

ve
l

Interaction

Logical
com-

ponents

C
on

ce
pt

ua
l

Le
ve

l Logical
se-

quences

Com-
puting

ressource
allocation

D
es

ig
n

Le
ve

l

Resource
se-

quences

Be-
haviour

monitoringR
un

 T
im

e
Le

ve
l

Adaptive
behaviour

Context
assum-
ptions

Context
definition

Con-
straints /
Design
Domain

Context
monitoring

Data
ingestion

Data
selection

Data pre-
paration /

mani-
pulation

Runtime
data

monitoring
and

collection

Training
concept

Optimiser
settings

Manage
continous
improve-

ments

AI Model

High level
AI model

AI model
concept

AI model
con-

figuration

AI model
per-

formance
monitoring

Information

Com-
pilation

Infor-
mation
model

Comm-
unication

model

Data
monitoring

Con-
nectivity

Interfaces

Node con-
nectivity

Resource
con-

nectivity

Con-
nectivity

monitoring

Ethics

Ethic
principles

Ethic
concept

Ethic
technical

realisation

Assess-
ment /

auditing of
AI

decisions

Privacy

Privacy
impact

analysis

Privacy
concept

Technical
solutions

for privacy

Assess-
ment of
privacy
com-

pliance

Security

Threat
analysis
(TARA)

Cyber-
security
concept

Technical
cyber-

security
concept

Security
monitoring

/
threat

response

Safety

Hazard
analysis
(HARA)

Functional
safety

concept

Technical
safety

concept

Safety
monitoring

/
safety de-
gradition

Behaviour and Context Means and Resources Communication Quality Concerns
Business Goals and Use Cases

Com-
ponent

hardware
archi-

tecture

System
hardware

archi-
tecture

High level
hardware

archi-
tecture

Hardware
per-

formance
monitoring

Training
objectives

Figure 10.2 Compositional architecture framework for AIoT systems, categorizing views in
different clusters of concerns on different levels of abstraction [18].

10.3 WebAssembly as a Common Layer for the Cloud-edge Continuum 207

10.2.6 Applying a compositional architecture framework in
practice

Based on the experience of applying a compositional architectural frame-
work, the following guideline can be provided:

Step 1: Identify clusters of concern. Clusters of concerns are identified.
Initially, larger groups of concerns (such as functionality, hardware, com-
munication, and quality) can be defined, which are then refined into atomic
clusters of concerns.

Step 2: Identify levels of abstraction. Levels of abstractions are iden-
tified. The number of required levels depends on the size and complexity of
system-of-interest and the development settings of the company. Three to four
different levels of abstraction seem a good default.

Step 3: Add existing architectural decisions. Known architectural deci-
sions are entered into the matrix. Most development projects do not start from
scratch but instead must reuse or integrate into existing architectures. Prior
knowledge, such as an existing component architecture, can be entered into
the appropriate clusters of concerns and level of abstraction in the architecture
matrix.

Step 4: Add missing architectural views. Architectural views are added.
Relations (morphisms) are created between the architectural views at each
level of abstraction such that no inconsistencies occur when looking at the
system-of-interest from different architectural views.

Step 5: Add missing relations. All relations between architectural
views must be mapped onto corresponding views of the next lower level of
abstraction. If a relation between two architectural views on a higher level
of abstraction does not have a correspondence on the next lower level of
abstraction, the relation might be unnecessary and can be removed, or a
corresponding relation needs to be created.

Step 6: Iterate if needed. During the system development, additional
clusters of concern might be discovered that iteratively are added.

Steps 1–5 are illustrated in Figure 10.3. At each step, implied require-
ments on aspects related to the corresponding architecture view are identified
and derived.

208 Methods for Requirements Engineering, Verification, Security, Safety

Step 1: Identify clusters

of concern

Step 2: Identify levels

of abstraction

Step 3: Add existing

architectural decisions

Step 4: Add missing

architectural views

Step 5: Add missing

relations

...

...

Figure 10.3 Steps taken for defining a compositional architectural.

10.3 WebAssembly as a Common Layer for the
Cloud-edge Continuum

The cloud is an immense ecosystem of countless providers offering dif-
ferent virtualized services to supply an enormous demand for computer
applications. Some of these applications ended up in the cloud to be more
convenient or cheaper to maintain, others were initially built for the cloud
for scalability and availability while relying on its naturally distributed and
replicated nature. Clouds can also offer lower latency, more resiliency, or
regulatory compliance. Regardless of the reason, cloud computing has prob-
ably become the most prominent infrastructure supporting applications today.
With a growing number of multi-cloud software, dealing with heterogeneous
cloud providers and technologies has become a common issue.

Telecommunication companies began deploying their own distributed
infrastructure, installing small, cloud-like clusters closer to consumers of
their services to improve performance, latency, or reliability. Local gov-
ernments and other infrastructure providers such as energy and transporta-
tion followed suit, deploying their own small clusters of fairly powerful

10.3 WebAssembly as a Common Layer for the Cloud-edge Continuum 209

computing devices close to the human activities they support. The use of
these highly distributed devices is collectively known as edge computing.

Today’s scenario is completed by billions of sensing and actuating devices
deployed around the globe, referred to as the Internet of Things or IoT.
Such devices often have limited processing capabilities and perform simple
tasks like measuring a temperature or turning a lightbulb on and off. They are
connected to the Internet, more than often coordinating their function through
edge devices, and connecting users through cloud services.

The combined existing infrastructure of IoT, edge, and cloud form an
abstraction that is currently being called the cloud-edge-IoT continuum, or
simply the cloud-edge continuum. This collective infrastructure is anything
but continuous, as each part exists in a separate silo, built of proprietary
solutions, as shown in Figure 10.4. Developers of applications spanning over
the continuum must implement specific solutions for each silo, often built
with incompatible software components. The lack of a seamless environment
makes it much more difficult to profit from the collective advantages of the
continuum.

Finally, applications shared by multiple users always counted on some
sort of security, usually dealing with encryption, authentication, and access
control, and there are many established tools. With the advent of the cloud,
which is accessed over the Internet, security has become a fundamental part
of all applications. Edge-cloud continuum application vendors, developers,
and users need to rely on the entire continuum – cloud, edge, and IoT – to
ensure their data is secure and their calculations are accurate.

An ideal seamless cloud-edge continuum should provide a lightweight
execution environment with a similar (or even identical) software and hard-
ware interface that allows unmodified code to run on any machine in the

Figure 10.4 Independent cloud, edge, and IoT silos.

210 Methods for Requirements Engineering, Verification, Security, Safety

system. A typical cloud-only environment is already fairly complex, com-
posed of several different hardware components, leveraged using extensive
software components, managed by large engineering teams, and shared
among many tenants. Adding edge and IoT to the picture shifts scale and
heterogeneity to another dimension.

In this chapter, we propose using WebAssembly as the core component of
a seamless environment spanning over the entire continuum. We advocate that
the technology provided by WebAssembly is suitable for the implementation
of applications on most hardware devices and software environments of
the cloud-edge continuum, with the appropriate level of security. Modern
hardware can execute WebAssembly with near-native code performance.
Combined with special hardware features that guarantee the confidential-
ity and integrity of applications, WebAssembly abstracts the complexity of
software development while providing a trusted environment. Naturally, as
with any nascent technology, many parts needed to implement a seamless
continuum are still missing.

In the sections that follow, we debate the drawbacks of existing software
architectures in more detail. We then present WebAssembly and its bene-
fits for implementing the continuum, in particular when supporting AIoT
applications. We conclude with a few ideas for future work on the topic.

10.3.1 Building blocks of a seamless continuum for AIoT

There are already some initiatives for a common environment for cloud, edge,
and IoT silos. In this section, we present a few popular ones and compare
them to a solution using WebAssembly as proposed.

The java virtual machine (JVM) is one of the first practical implemen-
tations of common environments that address the problem of applications
running on heterogeneous underlying systems. By and large, the JVM is
one of the most comprehensive choices today, with implementations rang-
ing from commodity servers to embedded devices. Still, the JVM supports
very few programming languages and adds significant performance penalties
compared to running C programs natively. Java programs depend on large
numbers of class libraries, which imposes a large memory footprint for the
execution of even the simplest programs.

Containers have recently emerged as an alternative to running applica-
tions in heterogeneous environments. They are, however, defined for specific
architectures and a specific operating system interface, and recompilation
is necessary to get containers that can run, for example, on Intel and Arm

10.3 WebAssembly as a Common Layer for the Cloud-edge Continuum 211

devices (popular as cloud and edge devices, respectively). WebAssembly has
the generality of JVM and the ease of use of containers, making it possible
to build cross-platform software that runs with negligible performance losses
and a small memory footprint.

Deploying applications automatically in a distributed system involves
addressing aspects such as access control and resource management, as
well as monitoring and optimizing computing and communication. We are
not aware of any practical, specific tool that covers the entire cloud-edge
continuum. We do not deal with this problem here, but we suspect it would be
possible to adapt many of the existing tools designed for the cloud, assuming
the underlying systems become more homogeneous. Also, some authors have
already started working on models for integrating cloud and edge devices into
one seamless deployment system [23, 24].

Security has already proven essential in standard cloud systems, where
application users must have guarantees that the confidentiality and integrity
of their data will be respected. These guarantees are difficult to provide in a
multi-tenant system, where co-tenants can abuse the system’s vulnerabilities
to discover (or infer) someone else’s application data. Also, one common
deterrent for cloud adoption is the provider’s curiosity, because they have
all the administrative power needed to inspect all content across all physical
machines. From an opposite point of view, providers want to be protected
from malicious tenants who may want to exploit infrastructure vulnerabilities
for their own benefit.

Compared to the cloud, edge infrastructure is much more distributed.
Edge devices are installed in end-user buildings and other shared infras-
tructures, even in public spaces, making it impossible to maintain physical
control over all the resources. Same as with the cloud, edge administrators
have physical access and control of the edge devices they manage. But
contrary to the cloud, edge users are close to the devices and can even abuse
them physically. We believe that edge infrastructures offer far fewer security
guarantees than the cloud.

Most current popular computer architectures include some form of trusted
execution environments (TEEs). They allow code execution in an isolated part
of the CPU, where access by other software is architecturally impossible. A
TEE can run a program and protect its data so that a machine administrator
cannot access it. Current implementations usually have an additional execu-
tion mode in the processor and may even offer memory encryption for TEE
data. The currently most popular implementation of TEE is Intel’s Secure
Guard Extensions (Intel SGX), for which commercial cloud services such as

212 Methods for Requirements Engineering, Verification, Security, Safety

Azure Confidential Computing already exist. For edge and IoT deployments,
the most popular architecture (Arm) offers TrustZone as a TEE. Again,
proprietary and incompatible solutions in the underlying hardware make it
difficult to reuse trusted software components from cloud to edge and vice
versa.

Confidential containers could be a viable alternative for deploying appli-
cations on the continuum, as suggested by Scontain [25]. They are similar
to traditional containers, except they run entirely in a trusted environment.
However, like other containers, they are platform dependent. They are also
expensive in terms of the resources required in many cases since they
can contain significant amounts of operating system functions. Microsoft’s
Azure Sphere follows the same idea, offering a unified programming model
and support for trusted execution technologies. But it only supports a few
programming languages and relies heavily on other Microsoft services.

By proposing WebAssembly as an execution model combined with
trusted execution environments, we can provide a seamless portability base
for running trusted applications. The same base can be used to deploy
applications on edge or cloud devices, with similar security guarantees. Also,
previous work [26] has shown that a double-sided sandbox enabled by a
WebAssembly TEE provides better security for the provider and for the
tenants. In the context of AIoT, securing proprietary machine learning models
is of utmost importance. Leveraging TEEs as a security mechanism to offload
inference removes the burden of having pervasive communication to the
cloud and lowers the number of end-user information to transfer offshore.
As a result, AIoT systems are more autonomous, while better preserving the
owners’ privacy, which is an essential concern in the years to come.

Many different IoT infrastructures have been deployed and are already
continuously generating data that feed cloud applications worldwide. Com-
ponents in the application chains (IoT to edge to cloud) can be updated
independently to add new functionalities and eliminate vulnerabilities. There
is increasing usage of federated machine learning, where edge devices work
together to build a model without revealing all the details of each user’s
data, helping to protect privacy. Remote software attestation [27], which
is usually paired with TEEs, also plays a fundamental role in such a dynamic,
distributed scenario. It makes it possible to build trust in certain software
components and to check their authenticity and integrity. It also allows ensur-
ing that one is remotely communicating with a specific, verified program.
We believe that attestation plays an essential role in building a fully trusted
environment for running cloud-edge continuum applications. Hence, cloud

10.3 WebAssembly as a Common Layer for the Cloud-edge Continuum 213

applications can infer security guarantees from AIoT software using attesta-
tion, despite being in untrusted physical environments, and can delegate part
of computations.

10.3.2 WebAssembly as a unifying solution

WebAssembly is a rather new and universal virtual instruction set archi-
tecture. Unlike previous cross-platform efforts such as Oracle’s Java and
Microsoft .NET, WebAssembly is being developed from the ground up by
a consortium of open technology companies, including Microsoft, Google,
and Mozilla. While originally designed to increase performance for active
web pages, WebAssembly does not depend on web-related functionality and
is increasingly used to build standalone applications. WebAssembly has many
advantages to being used as a unified execution unit for the cloud-edge
continuum. First, WebAssembly can be generated by compiling a variety
of programming languages. Second, unlike Java and .NET, WebAssembly is
lightweight, has minimal dependencies, and offers additional security benefits
like sandboxing.

WebAssembly interacts with the operating system thanks to the
WebAssembly System Interface (WASI), a standardized specification of a
POSIX-like interface. It is designed with conciseness and portability in mind,
allowing platforms to easily implement it, being ideal for constrained envi-
ronments such as IoT and Edge devices and TEEs. Common compilers for
languages like C and Rust seamlessly translate POSIX calls into WASI calls.
In addition, WASI follows the concept of capability-based security, where
access to each system resource must be granted by the runtime, such as file
system or socket interactions, materializing a strong boundary between the
applications and the operating system.

There are currently a few execution models for WebAssembly code: inter-
pretation, just-in-time (JIT), and ahead-of-time (AOT) compilation. Runtimes
like WAMR [28] can be adapted to offer one or more execution models, with
different memory footprints (209 KiB for AOT, 230 KiB for interpretation,
and 41 MiB for JIT). A growing list of toolchains (LLVM, Emscripten)
already supports WebAssembly as a compile target for various source lan-
guages, including C, C++, and Rust, with other languages such as C#, Go,
Kotlin, and Swift being under active development. For all these reasons, we
believe WebAssembly is an attractive practical binary architecture choice to
be used in the entire continuum.

214 Methods for Requirements Engineering, Verification, Security, Safety

10.3.3 The case for a TEE-backed WebAssembly continuum

Trusted execution environments aim to provide safe and trustworthy code
execution on (remote) untrusted hardware. Hardware manufacturers have
provided TEE implementations more than a decade ago, each one of them
offering different features and security guarantees. The most influential TEEs
that are currently marketed are Intel SGX [29], Arm TrustZone [30], and
AMD Secure Encrypted Virtualization (AMD SEV) [31]. These technologies
enable processing data in isolated memory areas that can neither be accessed
nor tampered with by more privileged software, such as the operating system
or the hypervisor. Hence, cloud providers and edge device owners with
management rights or even physical control cannot access the data and
computation of a tenant, protecting the confidentiality and integrity of their
applications.

Cloud providers, such as Microsoft Azure and Google Cloud, already
market confidential computing, and we expect widespread adoption of these
services due to the demand driven by the cloud-edge continuum. We observe
that the rich ecosystem of trusted environments largely varies in terms of
security, threat models, and implementation. However, defining a common
basis for trusted execution and making it widely available in both cloud and
edge environments is essential for the continuum and the industry in general.
For that reason, Arm, Intel, Microsoft, and others created the confidential
computing consortium (CCC), supporting open-source projects for trusted
execution technology under the umbrella of the Linux Foundation. A unified
abstraction for TEEs in the cloud-edge continuum must take support and
shape from such ongoing efforts. For that reason, the CCC is involved in
many projects, such as Enarx [32] and Veracruz [33], which aim to provide
WebAssembly support in TEEs independently from hardware.

In our previous work, we proposed a few solutions to execute general-
purpose WebAssembly applications within TEEs. We developed Twine [34]
to bring a WebAssembly runtime into Intel SGX enclaves, leveraging WASI
to interact with the TEE facilities and the untrusted operating system. More
recently, we proposed WaTZ [35], a trusted runtime for Arm TrustZone with
added remote attestation. The latter, an essential feature for providing trust
for remote applications, is surprisingly missing in Arm’s architecture. We
believe that industrial versions of our prototypes will help pave the way to
build distributed applications on the cloud-edge continuum that providers,
developers, and users can safely trust.

10.3 WebAssembly as a Common Layer for the Cloud-edge Continuum 215

10.3.4 WebAssembly performance

We refer to our previous work for many experiments regarding WebAssembly
performance. We first proposed a solution to run general-purpose WebAssem-
bly applications inside Intel SGX TEEs, leveraging WASI to interact with the
untrusted OS, while shielding the file system primitives to prevent eavesdrop-
ping. Later, we proposed a trusted runtime environment for Arm TrustZone
with remote attestation of WebAssembly code. A more recent publication
contains an extended version of this chapter, with some detailed performance
figures [36]. We refer the reader to these publications for the full detail of our
measurements.

In the performance measurements we made, we used WebAssembly
inside TEEs to implement many frequent tasks done by useful programs.
To measure the low-level cost of using WebAssembly, we used Polybench/C
[37], a tool that implements several sorts of different programming language
constructs frequently used, allowing us to compare the quality of different
compilers. We observed similar performance losses when using WebAssem-
bly on x86 and Arm architectures, with the execution time being increased by
30% on average.

To produce a comparison using more resources such as memory and disk,
we compared the execution performance of SQLite, a widespread and embed-
dable database management system, as most real-world applications generate,
store, and retrieve information to operate. As such, we used the built-in
benchmarks of SQLite named Speedtest1 [38]. Each Speedtest1 experiment
targets a single aspect of a database, such as selection using joins or the update
of indexed records. In our evaluation, WebAssembly was almost three times
slower than native code on an Intel x86 processor, and roughly two times
slower in an Arm processor. Interestingly, since we made these performance
comparisons at different moments in time, we could observe clear progress in
the environment. WebAssembly was four times slower in the experiments we
did two years earlier, using the same hardware and software, but with newer
versions of the compiler and the runtime environment. These enhancements
over the years strengthen the perspective of using WebAssembly as a uni-
versal, lightweight, yet versatile bytecode to enable platform independence
across the continuum.

10.3.5 WebAssembly limitations

Although current compilers such as LLVM are mature enough to generate
proper WebAssembly bytecode, the system call support currently offered by

216 Methods for Requirements Engineering, Verification, Security, Safety

WASI is rather limited. Extending WASI to be more POSIX-compliant would
probably reduce the ability to use it in several, more protected, environments,
such as web browsers. A different alternative is proposed by Emscripten,
which directly translates the source code into POSIX functions and system
calls. This helps to run older WebAssembly programs on POSIX systems
with only a few modifications, but it reduces the portability. We note that
the WebAssembly subgroup that focuses on standardizing WASI thoughtfully
extends the specifications to be features-complete.

Running WebAssembly code incurs a performance overhead. Some pro-
grams can run up to three times slower than their native version, depending
on the type of workload. This can be explained by many factors, such as
increased register pressure, additional branch instructions, increased code
size, stack overflow checks, and indirect call checks. While some of these
issues can be compensated for by having compilers spend more time gener-
ating better code, other factors are a consequence of WebAssembly’s design
limitations, which would require changes in its specifications, at the cost of
making it more difficult to implement.

WebAssembly uses linear memory to store the heap of a running program,
with a limited number of 64KiB pages, for a total of 4GiB. While most
software will not require more than this amount of linear memory, this
may limit some server-side applications, such as training large deep-learning
models or keeping large databases in memory. Recent proposals aim to extend
this limit by increasing the number of allocable pages, raising the theoretical
memory ceiling to 16 EiB (64-bits wide).

As with any young technology, WebAssembly still needs more efficient
implementations for many useful features. Future contributors may suggest
WebAssembly and WASI extensions to relax the constraints or extend the
capabilities of the specification. For example, WASI-nn proposes adding
a WASI machine learning module to facilitate model inference. We also
anticipate that many current limitations for the cloud-edge continuum will
disappear thanks to compiler advances, specification extensions, and better
WebAssembly support for popular requirements.

10.3.6 Closing remarks concerning the common layer

It is impossible to precisely predict which will be the winning technology
used to build the cloud-edge continuum. Yet, we envision it as an interopera-
ble, scalable, and distributed system in which any piece of software can reside
on any device, regardless of the underlying platform. Such capabilities will

10.4 TOCTOU-secure Remote Attestation and Certification for IoT 217

change the development lifecycle of future applications, allowing developers
to focus on business value rather than spending time with the complexity
of each individual piece of infrastructure. WebAssembly is perfectly suited
to this task thanks to its abstraction of the operating system, device type,
programming language, and the additional security guarantees it can offer
with TEEs.

We briefly presented some performance results showing that WebAssem-
bly is a viable alternative to running native applications, with acceptable over-
head. We have covered many aspects of successfully adopting WebAssembly
to implement the cloud-edge continuum. Many challenges remain to be
overcome, such as improving interoperability with existing programming
languages and extending WASI to better support more complex applica-
tions. Also, much progress is still necessary for terms of middleware, which
connects the components of the continuum and simplifies the deployment
and migration of applications. Thanks to the experience we acquired with
WebAssembly and Trusted Computing ecosystems, we are confident that they
are a well-suited software development foundation for building large-scale
systems such as the cloud-edge continuum.

10.4 TOCTOU-secure Remote Attestation and Certification
for IoT

A key component in securing connected IoT systems is ensuring the integrity
of the IoT software-state and detecting any change. This is typically achieved
with remote attestation (RA), which aims at verifying the state of the soft-
ware/memory of an untrusted attester (i.e., an IoT device) by allowing a
trusted verifier to engage in a challenge-response-based exchange of proof.
RA mechanisms rely on hardware/software/hybrid Root-of-Trust. As a result
of said attestation, the attester is certified with a certain level of assurance
guaranteeing software-state integrity that impacts trust decisions within net-
worked systems. The attestation often results in software updates or issuing
certificates indicating device assurance levels. The certificates include infor-
mation like the assurance evidence, device IDs, assurance level indicating the
trustworthiness of the device, etc. This assurance certificate only guarantees
that an IoT device has a verified software stack. IoT devices also need
conventional X.509 certificates when strong authentication is required, which
is enabled by public key infrastructure (PKI). There are efforts to bring
conventional PKI to IoT [39–41], which meet IoT limitations such as resource

218 Methods for Requirements Engineering, Verification, Security, Safety

constraints of the device, the dynamic operational environment, diversity in
the supply chain, etc.

It is important that we do not define yet another certification infrastructure
for assurance certification, and integrate assurance certificates with existing
state-of-the-art PKI. This chapter addresses both of these problems: (i) pro-
viding digital certification for device assurance (ii) as well as integrating
the new assurance certificates into the existing PKI certification, without
compromising the standard compliance and without security properties.

More specifically, in this chapter, we introduce and detail AutoCert
(Automated digital Certification) to provide TOCTOU security by combin-
ing Remote Attestation results about assurance of device health with standard
public key infrastructure (PKI) authentication processes.

In the context of RA and certificates that reflect the attested state of
the device, the time-of-check to time-of-use (TOCTOU) race condition may
take effect. The time-of-check to time-of-use invalidity is a highly contextual
problem, existing in remote attestation, operating systems, certifications, etc.,
and remains possible in this case as well. Due to the dynamic nature of
IoT systems, the software state of the device may have changed in the delta
time between the RA and the certificate issuance due to a software update,
vulnerability exploitation, or software version update. Although potential
solutions exist to prevent and resist TOCTOU attacks in trusted platform
module (TPM)-based remote attestation, a solution that provides a mech-
anism to validate the current software-state against the attested state and
use an assurance certificate without invoking RA again, is missing, and is
critical in the IoT domain. However, a solution that provides a mechanism
to validate the current software-state against the attested state in certificates
without invoking RA again is also critical in the IoT domain.

10.4.1 AutoCert – proposed mechanism

The AutoCert mechanism is an automated procedure comprising interactions
among an IoT owner, IoT devices as a part of a networked system, a trusted
third-party responsible for attesting the device’s software-state, for example, a
Conformity Assessment Body (CAB), and a standard Certification Authority
(CA) to enroll device certificates.

10.4.1.1 Pre-deployment
The manufacturer commissioned the IoT device with software, plat-
form/device certificate, a dedicated TPM 2.0 chip, and a secure unique device

10.4 TOCTOU-secure Remote Attestation and Certification for IoT 219

identifier during device initialization. The platform certificate binds the TPM
to the IoT device. The secure unique device identifier, that is, UDevID, is a
hardcoded identity like a device URI, EUI, or DevID playing a role in IoT
device identification in local and global networks.

The TPM’s Root-of-Trust originates with a unique 2048-bit RSA key pair,
known as the endorsement key (EK). The TPM restricts the use of the EK to
a limited set of decryption operations as per the TCG rules, and it cannot be
used directly for device authentication or digital signatures. Therefore, we
generate a 2048-bit RSA key pair, the attestation key (AK), using the EK as a
seed for attestation. The attestation certificate (CertAK) corresponding to the
AK is also generated at this state by the IoT manufacturer. The IoT manufac-
turers and solution providers classify IoT devices into usage profiles based on
their deployment scenario, for example, smart home, automotive, industrial,
critical infrastructure, smart grid, etc. In AutoCert, the IoT owner assigns
a device_profile to the IoT device to enable security policies for devices
within a network. This categorization assists CAs and CABs in conducting
reasonable risk assessment and vulnerability management throughout the
device lifecycle. The IoT device is configured to boot with trusted software
that measures (i.e., calculates the hash) the next software to be run and stores
this hash in a platform configuration register using the TPM2_PCR_Extend
function. This process continues through the OS kernel code resulting in
a chain of measurement. In AutoCert, we propose configuring security-
critical software, libraries, files, and executables as a part of this chain of
measurements.

10.4.1.2 Remote attestation
AutoCert’s remote attestation is built on the challenge/response interaction
model from the RATS architecture. Before a device is attested (Figure 10.5),
the IoT owner is responsible for generating the reference values correspond-
ing to the device software/s and securely transferring them to the verifier. We
assume a confidential exchange of these values. Before the remote attestation
begins, the IoT owner sends a signed request to the CAB with the UDevID
and device_profile of the IoT device. The CAB sends a signed attestation
request containing a random nonce N and a PCRSelection is sent to the
IoT device. The TPM2_Quote function is used to generate the evidence.
The cryptographically strong random nonce N uniquely distinguishes the
evidence, determines its freshness, and prevents replay attacks. We propose
the generation of an integrity key pair, IK, by the IoT device and sending it
along with the evidence for the creation of an integrity_proof. The IK is an

220 Methods for Requirements Engineering, Verification, Security, Safety

RSA key-pair, IKpriv, and IKpub generated with the TPM2_Create function
using the PCRSelection. Since any change in the security-critical software on
the device is recorded with an update to the PCR using TPM2_PCR_Extend,
the use of this PCRSelection in creating the IK ensures that this key will not
be valid if the software-state of the device changes.

A valid TPM-generated attestation key, the AK, is used to sign TPM-
generated evidence. It serves as a way for third parties to validate keys
and data generated by a specific TPM on an IoT device. On receiving the
evidence, the CAB validates the accompanying signature and compares the
evidence against reference values. Following the attestation result and using a
suitable risk assessment mechanism (not discussed in this work), the attester’s
assurance level is calculated against the device_profile. The results of attesta-
tion and the assurance level are used by the CAB to ensure the software-state
integrity

10.4.1.3 TOCTOU and integrity_proof
The integrity key pair, IK, is proposed to address the TOCTOU race con-
dition. The PCRSelection contains the measurements computed and stored
during the measured boot, representing the IoT device’s software-state.

Using these PCRs in RA and generating the IKpriv and IKpub key pair
creates a dependence of the IK on the software-state of the device. As soon
as the software-state changes due to a new vulnerability or malicious update,
the IK is invalidated.

This forms the core of AutoCert procedures and is a part of the proof of
the IoT device’s software-state integrity, as it strictly locks the IK to a valid
state of the device. We compute an integrity_proof by aggregating the value
of PCRSelection used in evidence generation, that is, PCRIntegrity and the
IKpub. The integrity_proof , assurance level, and UDevID are then shared
with a trusted CA. The CA now possesses records of attested IoT devices
against their UDevID and assurance attributes. These attributes are integrated
with the IoT profile of the standard X.509 certificate using custom extensions.
This certificate CertAC reflects a CA-verified device identity (authentication)
as well as the CAB-attested software-state of the IoT device (assurance).

10.4.1.4 Verification for TOCTOU security
The verification of this integrity_proof for TOCTOU security applies to
all IoT devices using X.509 certificates for authentication and establishing
secure DTLS communication sessions with clients.

10.4 TOCTOU-secure Remote Attestation and Certification for IoT 221

IoT Device CAB

Generate attestation Evidence:

TPM2_Quote (N, PCRSelection) = Evidence, SignatureAK

Generate integrity keys:

TPM2_Create (PCRSelection) = IKpub , IKpriv

TPM

IoT Solution

Provider/Owner

UID, device_profile, SignatureRVP

TPM

N, UID, PCRSelection, SignatureCAB

Evidence, IKpub, SignatureAK

Verify SignatureAK

Compare Evidence with Reference Values

Risk Evaluation based on device_profile

Generate Assurance Level based on device_profile

Generate integrity_proof: PCRSelection || IKpub

Generate SignatureCAB

Assurance

Figure 10.5 Remote attestation procedure.

To achieve assurance of the IoT device’s software-state, the client
performs two levels of integrity checks, as presented in Figure 10.6.

The first level of integrity check includes verifying the assurance level
stated in the CertAC . This assurance level would form the basis of network
access policies or authorization to access system resources.

However, as stated earlier, it is possible that the IoT device’s software-
state changes after the remote attestation process, or CertAC enrollment.
This can happen due to malware or vulnerabilities in existing software. This
scenario presents itself as an instance of a TOCTOU attack, and checking the
assurance level is insufficient in security-critical cases.

222 Methods for Requirements Engineering, Verification, Security, Safety

To eliminate this TOCTOU condition, AutoCert facilitates another level
of integrity verification. To perform this Level2 integrity check, AutoCert
introduces a lightweight service to ensure that the integrity_proof is valid.
The verification process includes sending a random challenge by the client
to the IoT device after signing it using the IKpub from integrity_proof in the
CertAC . Since the integrity_proof is locked to the state of the IoT device
attested by CAB, it can only be decrypted by the IoT device if it possesses
IKpriv, hence guaranteeing proof of possession. The IoT device decrypts
the challenge, includes the current value of the PCRIntegrity, and signs it.
The challenge ensures the freshness of this message exchange. The current
value of the PCR concatenated with the challenge is received by the client,
which verifies it against the PCR values from the integrity_proof, that is,
the PCRIntegrity confirming that no changes have occurred concerning the
software-state since attestation.

10.4.2 Implementation and experimental evaluation

As a proof-of-concept (PoC), we implemented the AutoCert setup with an
attestation service on the IoT device, which is invoked when it receives
an attest request. We also implemented an integrity verification service
corresponding to the two levels of integrity checks. The experiments are
performed using the OPTIGA TPM Evaluation Kit. The evaluation hardware
is comprised of a Quad Core 1.2GHz, 64-bit Raspberry Pi 3 with 1 GB
RAM and an Iridium board with OPTIGA SLM 9670 TPM 2.0. We choose
TPM SLM 9670 for this evaluation since it is specially designed for use in
automotive/industrial applications. The following set of experiments aims to
measure the system-wide execution time of the proposed mechanism during
different phases. We measured the round trip time (RTT) as the time elapsed
from the start of each AutoCert phase until the completion of the phase. We
measured the phases using a system clock in nanoseconds and iterated the
experiments five to ten times to ensure statistical accuracy.

Phase 1 of AutoCert begins with a request to the CAB to initiate AutoCert
remote attestation with the IoT device. The RTT of this phase is 28,800 ms.
This phase is expected to execute during device assembly after the unique
device keys are integrated into the hardware, and device software is installed.
This does not interrupt runtime services like mutual authentication, where
excessive delays disrupt services, timeout, or cancellation of operations.

Phase 2 of AutoCert is the certificate enrollment. On receiving a certifi-
cate enrollment request from the IoT device, the CA checks for assurance

10.4 TOCTOU-secure Remote Attestation and Certification for IoT 223

IoT Device Edge/Hub

Parse Certificate extensions

Verify SignatureCAB

Get Assurance Level

If Assurance Level meets device

policy, Level 1 successful

IKpriv (PCR || n || SignatureAK)

TPM

Decrypt : PCR || n || SignatureAK

Verify SignatureAK

Compare nreceived with nsent

If PCR is equal to PCRintegrity from

Certificate, Level 2 successful

Generate challenge n

Encrypt n using IKpub

IKpub (n)

Decrypt IKpriv (n) : n

Concat PCR with n : PCR || n

Sign with AK : PCR || n || SignatureAK

Encrypt with IKpriv : IKpriv (PCR || n || SignatureAK)

TPM

L
ev

el
 1

 V
er

if
ic

at
io

n
L

ev
el

 2
 V

er
if

ic
at

io
n

Figure 10.6 Verification procedure.

attributes received from the CAB, associated with the UDevID of the IoT
device, and enrolls the certificate, including the assurance attributes. The
enrollment of CertAC with assurance attributes takes 7104 ms. This measure-
ment merely gives an estimate of the generation of a certificate with additional
extensions. In actual events, certificate issuance and enrollment time also vary
depending on the computational capabilities of the CA and network capacity.

Phase 3 of AutoCert provides 2 levels of assurance to the communicat-
ing devices. The proposed level 1 integrity check attains a basic level of
assurance. This begins by verifying the signature and the assurance level
from the CertAC . An extended TOCTOU security of assurance is provided

224 Methods for Requirements Engineering, Verification, Security, Safety

in level 2. The level 1 verification steps are executed in 0.7 ms, and the
RTT for level 2 verification, including minor network delays between the
two involved entities, is 4746 ms. The majority of the execution time during
level 2 verification can be traced to the creation and loading of the encryption
key. As these operations depend on the implementation of TPM specifications
and adjacent function libraries, it is reasonable to state here that the RTT for
level 2 verification is justified considering the hardware security guarantees
provided by the TPM.

10.4.3 AutoCert – conclusion

This chapter presented AutoCert, addressing TOCTOU security in integrity
certificates corresponding to software-state assurance in IoT devices and
providing a standardized mechanism to distribute integrity certificates. Auto-
Cert’s remote attestation is based on IETF RATS relying on TPM2.0 for
evidence generation. We have proposed the integration of the AutoCert
mechanisms into existing standards to facilitate its adoption in the emerging
PKI for IoT.

10.5 Conclusion

In this chapter, a compositional architectural framework was derived during
focus groups within the project consortium. Compositional thinking allows
for an effective co-design of all relevant concerns of the system-of-interest.
Especially for AI components, the architectural framework allows for effec-
tive data selection, AI model development, and hardware design. Qualitative
aspects, such as safety, security, and privacy, but also ethical aspects are
explicitly considered throughout the design process. Furthermore, to ensure
functionality and quality aspects of the system, the architectural framework
considers monitoring concepts for runtime operations of the system.

In addition, a common layer for the cloud-edge continuum based on
the WebAssembly virtual instruction set architecture is introduced. We dis-
cussed the historical context and the shortcomings of existing software
development environments and shed light on what improvements can be
implemented to arrive at seamless, secure applications across the contin-
uum. We then presented WebAssembly’s advantages for such applications,
along with its preliminary performance comparison for executing benchmark
payloads, thus supporting the concept’s viability for building the unified
technology.

References 225

Furthermore, we presented the time-of-check to time-of-use challenges
that remote attestation and certification face in the context of AIoT systems.
An overview of the seriousness and specificity of TOCTOU problems for
IoT devices, resulting from resource constraints of such devices, was given,
describing their operational environment, supply chain, vulnerability man-
agement, and others. Then, we highlighted the importance of developing
a solution capable of software validation appropriate for IoT devices and
described AutoCert as a proposed mechanism.

Acknowledgement

This publication incorporates results from the VEDLIoT project, which
received funding from the European Union’s Horizon 2020 research and
innovation program under Grant Agreement No. 957197.

References

[1] Joel Höglund, Samuel Lindemer, Martin Furuhed, Shahid Raza.
PKI4IoT: Towards Public Key Infrastructure for the Internet of Things.
Computers & Security journal (Elsevier), Volume 89, Pages 101658,
February 2020

[2] Joel Höglund, Martin Furuhed, Shahid Raza. Lightweight Certificate
Revocation for Low-power IoT with End-to-end Security. Journal of
Information Security and Applications (Elsevier), Volume 73, 103424,
March 2023

[3] Joel Höglund, Martin Furuhed, Shahid Raza. Towards Automated PKI
Trust Transfer for IoT. The 3rd International Conference on Public Key
Infrastructure and Its Applications (PKIA 2022), September 9-10, 2022.

[4] Anitha Murugesan, Sanjai Rayadurgam, and Mats Heimdahl. Require-
ments reference models revisited: Accommodating hierarchy in system
design. Proceedings of the IEEE International Conference on Require-
ments Engineering, 2019-September:177–186, 2019.

[5] Nalchigar, S., Yu, E., Keshavjee, K., 2021. Modeling machine learning
requirements from three perspectives: a case report from the healthcare
domain. Requirements Engineering 26, 237–254.

[6] Patrizio Pelliccione, Eric Knauss, Rogardt Heldal, S. Magnus Ågren,
Piergiuseppe Mallozzi, Anders Alminger, and Daniel Borgentun. Auto-
motive Architecture Framework: The experience of Volvo Cars. Journal
of Systems Architecture, 77:83–100, 2017.

226 Methods for Requirements Engineering, Verification, Security, Safety

[7] Bosch, Jan, Helena Holmström Olsson, and Ivica Crnkovic. “Engineer-
ing ai systems: A research agenda.” Artificial Intelligence Paradigms for
Smart Cyber-Physical Systems (2021): 1-19.

[8] Lucas Bernardi, Themis Mavridis, and Pablo Estevez. 150 successful
machine learning models: 6 lessons learned at Booking.com. Proceed-
ings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 1743–1751, 2019.

[9] Phillippe Kruchten. Architecture blueprints—the “4+1” view model of
software architecture, volume 12. ACM Press, New York, New York,
USA, 1995.

[10] Eoin Woods. Software Architecture in a Changing World. IEEE Soft-
ware, 33(6):94–97, 2016.

[11] Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner,
D., Chaudhary, V., Young, M., Crespo, J.F., Dennison, D., 2015. Hid-
den technical debt in machine learning systems. Advances in Neural
Information Processing Systems 2015-January, 2503–2511.

[12] Henry Muccini and Karthik Vaidhyanathan. Software Architecture for
ML-based Systems: What Exists and What Lies Ahead. Proceedings of
the 43rd International Conference on Software Engineering„ mar 2021.

[13] Zhiyuan Wan, Xin Xia, David Lo, and Gail C. Murphy. How does
Machine Learning Change Software Development Practices? IEEE
Transactions on Software Engineering, 2020.

[14] Greg Giaimo, Rebekah Anderson, Laurie Wargelin, and Peter Sto-
pher. Will it Work? Transportation Research Record: Journal of the
Transportation Research Board, 2176(1):26–34, jan 2010.

[15] Anitha Murugesan, Sanjai Rayadurgam, and Mats Heimdahl. Require-
ments reference models revisited: Accommodating hierarchy in system
design. Proceedings of the IEEE International Conference on Require-
ments Engineering, 2019-September:177–186, 2019.

[16] Silverio Martínez-Fernández, Justus Bogner, Xavier Franch, Marc
Oriol, Julien Siebert, Adam Trendowicz, Anna Maria Vollmer, and
Stefan Wagner. Software Engineering for AI-Based Systems: A Survey.
Preprint, 1(1), 2021.

[17] International Organization for Standardization. ISO / IEC / IEEE
42010:2012: Systems and software engineering — Architecture descrip-
tion. Swedish Standards Institute, Stockholm, swedish standard edition,
2012.

[18] Heyn, Hans-Martin, Eric Knauss, and Patrizio Pelliccione. “A composi-
tional approach to creating architecture frameworks with an application

References 227

to distributed AI systems.” Journal of Systems and Software (2023): In
print.

[19] Bashar Nuseibeh. Weaving Together Requirements and Architectures.
Computer, 34(3):115–119, 2001.

[20] Jane Cleland-Huang, Robert S. Hanmer, Sam Supakkul, and Mehdi
Mirakhorli. The twin peaks of requirements and architecture. IEEE
Software, 30(2):24–29, 2013.

[21] European Commission. Regulation of the European Parliament and of
the Council laying down harmonised rules on Artificial Intelligence
(Artificial Intelligence Act) and amending certain Union Legislative
Acts, 2020.

[22] International Organization for Standardization. ISO 26262:2018: Road
vehicles— Functional safety. International Organization for Standard-
ization, Geneva, 2018.

[23] Luiz Bittencourt, Roger Immich, Rizos Sakellariou, et al., ‘The Internet
of things, fog and cloud continuum: integration and challenges’, Internet
of Things, vol. 3, pp. 134–155, 2018.

[24] Daniel Balouek-Thomert, Eduard Gibert Renart, Ali Reza Zamani, et
al., ‘Towards a computing continuum: Enabling edge-to-cloud inte-
gration for data-driven workflows’, International Journal of High Per-
formance Computing Applications, vol. 33, num. 6, pp. 1159–1174,
2019.

[25] Sergei Arnautov, Bohdan Trach, Franz Gregor, et al., ‘SCONE: secure
Linux Containers with Intel SGX’, 12th Symposium on Operating
Systems Design and Implementation, USENIX, 2016.

[26] David Goltzsche, Manuel Nieke, Thomas Knauth, et al. ‘AccTEE: A
WebAssembly-based Two-way Sandbox for Trusted Resource Account-
ing’, 20th International Middleware Conference, ACM, 2019.

[27] Jämes Ménétrey, Christian Göttel, Anum Khurshid, et al., ‘Attestation
mechanisms for trusted execution environments demystified’, 22nd IFIP
International Conference on Distributed Applications and Interoperable
Systems, Springer, 2022.

[28] WebAssembly micro runtime (WAMR),
https://github.com/bytecodealliance/wasm-micro-runtime.

[29] Victor Costan and Srinivas Devadas, ‘Intel SGX explained’, IACR
Cryptology ePrint Archive, 2016.

[30] Arm, ‘Introducing Arm TrustZone’, https://developer.arm.com/ip-
products/security-ip/trustzone, 2019.

228 Methods for Requirements Engineering, Verification, Security, Safety

[31] Advanced Micro Devices. ‘Secure Encrypted Virtualization API: Tech-
nical Preview’, tech. rep. 55766, 2019.

[32] Enarx, https://enarx.io.
[33] Veracruz, https://veracruz-project.com.
[34] Jämes Ménétrey, Marcelo Pasin, Pascal Felber, et al., ‘Twine: an embed-

ded trusted runtime for WebAssembly’, 37th International Conference
on Data Engineering, IEEE, 2021.

[35] Jämes Ménétrey, Marcelo Pasin, Pascal Felber, et al., ‘WaTZ: a Trusted
WebAssembly runtime environment with remote attestation for Trust-
Zone’, 38th International Conference on Distributed Computing Sys-
tems, IEEE, 2022.

[36] Jämes Ménétrey, Marcelo Pasin, Pascal Felber, et al., ‘WebAssembly
as a common layer for the cloud-edge continuum’, 2nd Workshop on
Flexible Resource and Application Management on the Edge, 2022.

[37] Louis-Noël Pouchet et al., ‘PolyBench/C the polyhedral benchmark
suite’, 2018.

[38] Lv Junyan, Xu Shiguo, and Li Yijie, ‘Application research of embedded
database SQLite’, International Forum on Information Technology and
Applications, IEEE, 2009.

[39] Joel Höglund, Samuel Lindemer, Martin Furuhed, Shahid Raza.
PKI4IoT: Towards Public Key Infrastructure for the Internet of Things.
Computers & Security journal (Elsevier), Volume 89, Pages 101658,
February 2020

[40] Joel Höglund, Martin Furuhed, Shahid Raza. Lightweight Certificate
Revocation for Low-power IoT with End-to-end Security. Journal of
Information Security and Applications (Elsevier), Volume 73, 103424,
March 2023

[41] Joel Höglund, Martin Furuhed, Shahid Raza. Towards Automated PKI
Trust Transfer for IoT. The 3rd International Conference on Public Key
Infrastructure and Its Applications (PKIA 2022), September 9-10, 2022.

